Preview

Литосфера

Расширенный поиск

О процессах лазерного испарения и использовании водных стандартов при ЛА-ИСП-МС-анализе ряда минералов

Полный текст:

Аннотация

Получены систематические экспериментальные данные по влиянию параметров лазерного излучения с длиной волны 266 нм (приставка LSX-500, YAG:Nd-лазер) на испарение и образование кратеров в силикатах (цирконе, кварце и др.), фосфатах (монаците, апатите и др.), сульфидах (галените, пирите и др.), а также в кварцевых стеклах. С использованием электронной сканирующей микроскопии (микроскоп JEOL-JSM6390LV) сформирована электронная база данных и атлас кратеров испарения проб; выполнен анализ стереоизображений кратеров, изучена их форма и размеры; проведен расчет массы испаренного вещества. Показано, что процесс лазерного испарения в зерне минерала носит достаточно индивидуальный характер, что требует его детального изучения для оптимизации условий испарения пробы и улучшения аналитических характеристик при исследовании его микропримесного состава ЛА-ИСП-МС-методом. Выполнены эксперименты по опробованию твердых силикатных и карбонатных матриц NIST-612 (National Institute of Standards and Technology), Basalt Glass TB 1G и MACS 3 (United States Geological Survey) в качестве СО микрогомогенного состава для ЛА-ИСП-МС-методики локального определения микроэлементов в минералах (масс-спектрометр ELAN 9000). Предложена схема и испытана приставка для совмещения двух потоков аргона на горелке масс-спектрометра - от лазерной приставки и от распылителя градуировочного водного раствора, в качестве которого использовался мультиэлементный раствор фирмы Perkin-Elmer Instruments; установлено, что имеет место эффект значительного элементного фракционирования, приводящего к отклонению полученных результатов от истинного значения; обоснованы подходы и усовершенствованы методики обсчета аналитических данных на основе использования поправочных коэффициентов, при этом погрешность не превышает границ погрешности метода.

Об авторах

Сергей Леонидович Вотяков
Институт геологии и геохимии УрО РАН
Россия


Наталья Николаевна Адамович
Институт геологии и геохимии УрО РАН
Россия


Список литературы

1. Быковский Ю.А., Неволин В.Н. Лазерная мacc-спектрометрия. М.: Энерrоатомиздат, 1985. 128 с.

2. Вотяков С.Л., Адамович Н.Н., Главатских С.П. Особенности лазерной абляции минералов как основа для разработки методики их локального химического анализа // Ежегодник-2009. Тр. ИГГ УрО РАН. вып. 157. 2010. С. 310-316.

3. Borisov O.V., Mao X.L., Russo R.E. Effects of crater development on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry // Spectrochim. Acta. 2000. P. B. V. 55. P. 1693-1704.

4. Cromwell E.F., Arrowsmith P. Fractionation effects in laser ablation inductively couples plasma mass spectrometry // Appl. Spectrosc. 1995. V. 49. P. 1652-1660.

5. Gray A.L. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry // Analyst. 1985. V. 110. P. 551-556.

6. Guillong M., Horn I., Gunther D. A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP MS // J. Analyt. Atom. Spectrom. 2003. V. 18. P. 1224-1230.

7. Gunther D., Koch J. Formation of aerosols generated by laser ablation and their impact on elemental fractionation in LA-ICP-MS. In Laser ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (P. Sylvester, ed.) // Mineal. Asoc. Can. Short Course Series. 2008. V. 40. P. 19-34.

8. Hager J.W. Laser Sampling ICP-MS: Quantitation Without Matrix Matched Standards // PE SCIEX. 9P. 1990.

9. Hanchar J.M., Hoskin P.W.O. Reviews in mineralogy and geochemistry. ZIRCON // Mineral. Soc. Amer. 2003. V. 53. P. 27-62.

10. Horn I., Gunther D., Guillong M. Evaluation and design of a solid state 193 nm OPO Nd:YAG laser ablation system // Spectrochim. Acta B. 2003. 58. Р. 1837-1846.

11. Jackson S.E. The application of Nd:YAG lasers in LA-ICP-MS. In Laser ablation ICP-MS in the Earth Sciences: Principles and applications (P. Sylvester, ed.) // Mineal. Asoc. Can. Short Course Series. 2001. V. 29. P. 29-45.

12. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47-69.

13. Jeffries T.E., Jackson S.E., Longerich H.P. Application of a frequency quintupled Nd:YAG source (λ = 213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals // J. Analyt. Atom. Spectrom. 1998. V. 13. P. 935-940.

14. Kosler J. Laser ablation sampling strategies for concentration and isotope ratio analyses by ICP-MS. In Laser ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (P. Sylveter, ed.) // Mineal. Asoc. Can. Short Course Series. 2008. V. 40. P. 79-92.

15. Kosler J., Wiedenbeck M., Wirth R. et al. Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon implications for elemental fractionation during ICP-MS analysis // J. Analyt. Atom. Spectrom. 2005. V. 20. P. 402-409.

16. Kuhn H.R., Gunther D. Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser induced brass aerosols // Anal. Chem. 2003. V. 75. P. 747-753.

17. Kuhn H.R., Gunther D. The agglomeration state of nanosecond laser generated aerosol particles entering the ICP // Anal. Bioanal. Chem. 2005. V. 383. P. 434-441.

18. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Isues (P. Sylveter, ed.) // Mineal. Asoc. Can. Short Course Series. 2008. V. 40.

19. Liu C.Y., Mao X.L., Mao S.S. et al. Particle size dependent chemistry from laser ablation of brass // Anal. Chem. 2005. V. 77. P. 6687-6691.

20. Liu H.C., Borisov O.V., Mao X.L.et al. Pb/U fractionation during Nd:YAG 213 nm and 266 nm laser ablation sampling with inductively coupled plasma mass spectrometry // Appl. Spectrosc. 2000. V. 54. P. 1435-1442.

21. Mank A.J.G., Mason P.R.D. A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica based glass samples // J. Analyt. Atom. Spectrom. 1999. V. 14. P. 1143-1153.

22. O'Connor C., Sharp B., Evans P. On-line additions of aqueous standards for calibration of laser ablation inductively coupled plasma mass spectrometry: theory and comparison of wet and dry plasma conditions // J. Analyt. Atom. Spectrom. 2006. V. 21. P. 556-565.

23. Ohata M., Furuta N. Laser defocusing Effects on laser ablation inductively coupled plasma-atomic emission spectrometry: different ablation interactions between the laser and low-alloy steel, Fe pellets, and a pond sediment pellet // Analytical Sciences. 2004. V. 20. P. 701-706.

24. Outridge P.M., Doherty W., Gregroire D.C. The formation of trace element enriched particulates during laser ablation of refractory materials // Spectrochim. Acta. 1996. B. V. 51. P. 1451-1462.

25. Outridge P.M., Doherty W., Gregroire D.C. Ablative and transport fractionation of trace elements during laser sampling of glass and copper // Spectrochim. Acta. 1997. Part B. V. 52. P. 2093-2102.

26. Poitrasson F., Freydier R., Mao X. et al. Femtosecond laser ablation ICP-MS analysis of trace elements in solids // Geochim. Cosmochim. Acta. 2005. V. 69. A54.

27. Poitrasson F., Mao X.L., Mao S.S. . et al. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon // Anal. Chem. 2003. V. 75. P. 6184-6190.

28. Russo R.E., Mao X.L., Borisov O.V., Liu H.C. Influence of wavelength on fractionation in laser ablation ICP-MS // J. Analyt. Atom. Spectrom. 2000. V. 15. P. 1115-1120.

29. Saetveit N.J., Bajic S.J., Baldwin D.P., Houk R.S. Influence of particle size on fractionation with nanosecond and femtosecond laser ablation in brass by online differential mobility analysis and inductively coupled plasma mass spectrometry // J. Analyt. Atom. Spectrom. 2008. V. 23. P. 54-61.

30. Seydoux-Guillaume A.-M, Freydier R., Poitrasson F. et al. Dominance of mechanical over thermally induced damage during femtosecond laser ablation of monazite // Eur. J. Mineral. 2010. V. 22. P. 235-244.

31. Sylvester P.J. A practical guide to platinum-group element analysis of sulphides by laser-ablation ICP-MS. In Laser ablation ICP-MS in the Earth Sciences: Principles and applications (P. Sylveter, ed.) // Mineal. Asoc. Can. Short Course Series. 2001. V. 29. P. 203-212.

32. Sylvester P.J. Matrix Effects in laser ablation-ICP-MS. In Laser ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (P. Sylveter, ed.) // Mineal. Asoc. Can. Short Course Series. 2008. V. 40. P. 67-78.

33. Walting J.R., Herbert H.K., Abell I.D. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to The analysis of selected sulphide minerals // Chem. Geol. 1995. V. 124. P. 67-81.


Для цитирования:


Вотяков С.Л., Адамович Н.Н. О процессах лазерного испарения и использовании водных стандартов при ЛА-ИСП-МС-анализе ряда минералов. Литосфера. 2011;(4):56-69.

Просмотров: 67


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)