Источник углерода углекислого газа изотопно-тяжелых конкреционных карбонатов
Аннотация
Ключевые слова
550.42 (470.5)
Список литературы
1. Байков А.А., Седлецкий В.И. О сверхвысоких скоростях терригенной седиментации на континентальном блоке в фанерозое // Проблемы литологии, геохимии и осадочного рудогенеза. М.: Наука, Интерпериодика, 2001. С. 93-108.
2. Щербов Б.Л., Страховенко В.Д. Геохимия конкреций из донных отложений искусственного пруда // Докл. АН. 2004. Т. 397, № 5. С. 680-684.
3. Adshead J.D. Stable isotopes, 14C dating, and geochemical characteristics of carbonate noduls and sediments in northern Juan de Fuka Ridge, northeast Pacific // Chemical Geology. 1996. V. 129. P. 133-152.
4. Avery G.B. Jr, Shannon R.D., White J.R. et. al. Control of methan production in a tidal freshwater estuary and peatland: Methan production via acetate fermentation and CO2 reduction // Biogeochemistry. 2002. V. 62. Р. 19-37.
5. Brenchley P.J., Carden G.A., Hints L. et. al. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation // Geol. Soc. Amer. Bull. 2003. V. 115, № 1. P. 89-104.
6. Charman D.J., Aravena R., Bryant Ch.L. et. al. Carbon isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor, southwest England // Geology. 1999. V. 27, № 6. P. 539-542.
7. Coniglio M., Myrow P., White T. Stable carbon and oxy-gen isotope evidence of Cretaceous sea-level fluctuations recorded in septarian concretions from Pueblo, Colorado, U.S.A. J. Sediment. Res. 2000. V. 70. № 3. P. 700-714.
8. Gregory R.T., Douthitt C.B., Duddy I.R. et. al. Oxygen isotopic composition of carbonate concretions from the lower Cretaceous of Victoria, Australia: Implications for the evolution of meteoric waters on the Australian continent in a paleopolar environment // Earth Planet. Sci. Lett. 1989. V. 92. P. 27-42.
9. Halverson G.P., Hoffman P.F., Schrag D.P. et. al. Toward a Neoproterozoic composite carbon-isotope record // GSA Bulletin. 2005 Geol. Soc. Amer. Bull. 2005. V. 117. P. 1181-1207.
10. Khim B.K., Woo K.S., Sohn Y.K. Distinct sedimentary processes reflected in the isotopic signatures of dolomitic concretions in the Miocene Pohang Basin (southwestern East Sea) // J. Asian Earth Sci. 2007. V. 29. P. 939-946.
11. Lash G.G., Blood D. Origin of early overpressure in the Upper Devonian Catskill Delta Complex, Western New York state // Chem. Geol. 2004. V. 206. P. 407-424.
12. McKay J.L., Longstaffe F.L., Plint A.G. Early diagenesis and its relationship to depositional environment and relative sea-level fluctuations (Upper Cretaceous Marshybank Formation, Alberta and British Columbia) // Sedimentology. V. 42. P. 161-190.
13. Middleton H.A., Nelson C.S. Origin and timing of siderite and calcite concretions in late Palaeogene non- to marginal-marine facies of the Te Kuiti Group, New Zealand // Sediment. Geol. 1996. V. 103. P. 93-115.
14. Raiswell R., Fisher Q.J. Mudrock-hosted carbonate concretions: A review of growth mechanisms and their influence on chemical and isotopic composition // J. Geol. Soc., London. 2000. V. 157. P. 239-251.
15. Zodrow E.L., Cleal Ch.J. Anatomically preserved plants in siderite concretions in the shale split of the Foord Seam: mineralogy, geochemistry, genesis (Upper Carboniferous, Canada) // Intern. J. Coal Geol. 1999. V. 41. P. 371-393.
Рецензия
Для цитирования:
Расулов А.Т. Источник углерода углекислого газа изотопно-тяжелых конкреционных карбонатов. Литосфера. 2010;(2):130-134.