Preview

LITHOSPHERE (Russia)

Advanced search

Rare earth elements and yttrium in calcite and pyrite of the Orlovka gold deposit (the Southern Urals)

Abstract

REE and Y patterns for calcite and pyrite of the Orlovka gold deposit were considered. Two environments, in which evolved ore-forming fluid, are determined: early high-temperature (>200-250ºC) and later low-temperature (<200ºC). The high-temperature environment characterizes conditions of fluid formation during a progressive stage of greenschist dynamometamorphism of host rocks. Positive Eu and Y anomalies in calcite are its indicator. Minerals of ore paragenesis (calcite and pyrite) formed in low-temperature conditions, which probably existed during a regressive stage. It is shown that negative Ce anomalies in calcite could be caused by fluid-limestone interaction and also by a presence of sea or meteoric water in ore formation. Values of Y/Ho ratios for calcite display a participation of sea water. Values of Y/Ho ratios for pyrite correspond to these rations for effusive and volcanogenic-sedimentary wall rocks.

About the Author

S. E. Znamensky
Institute of Geology Ufa Science Centre Russian Academy of Sciences
Russian Federation


References

1. Знаменский С.Е. (2008) Структурная эволюция Магнитогорской мегазоны (Южный Урал) в позднем палеозое. Докл. АН, 420(1), 85-88.

2. Знаменский С.Е., Мичурин С.В. (2013) Условия образования золото-сульфидного месторождения Миндяк (Южный Урал): структурные и изотопно-геохимические аспекты. Литосфера, (4), 121-135.

3. Знаменский С.Е. Мичурин С.В., Анкушева Н.Н. (2013) Происхождение рудообразующих флюидов Орловского месторождения золота, Южный Урал. Руды и металлы, (4), 52-60.

4. Знаменский С.Е., Пучков В.Н., Мичурин С.В. (2015) Источники рудообразующих флюидов и условия формирования орогенных месторождений золота зоны Главного Уральского разлома на Южном Урале. Докл. АН, 464(3), 313-316.

5. Римская-Корсакова М.Н., Дубинин А.В. (2003) Редкоземельные элементы в сульфидах подводных гидротермальных источников Атлантического океана. Докл. АН, 389(5), 672-676.

6. Bau M. (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and significance of oxidation state of europium. Chem. Geol., 93, 219-230.

7. Bau M. (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol., 123, 323-333.

8. Bau M., Dulski P. (1995) Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib. Mineral. Petrol., 119, 213-223.

9. Bau M., Möller P. (1992) Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite. Mineral. Petrol., 45, 231-246.

10. Guangzhou M., Renmin H., Jianfeng G., Weiqiang L., Kuidong Z., Guangming L. (2009) Existing forms of REE in gold-bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China. J. rare earths, 27(6), 1079-1087.

11. McDonough W.F., Sun S. (1995) The composition of the Earth. Chem. Geol., 120, 223-253.

12. Schwinn G., Markl G. (2005) REE systimatics in hydrothermal fluorite. Chem. Geol., 216, 225-248.

13. Sverjensky D.A. (1984) Europium redox equilibria in aqueous solution. Earth Planet. Sci. Lett., 67, 70-78.

14. Tanaka K., Kawabe I. (2006) REE abundances in ancient seawater inferred from marine limestone and experimental REE partition coefficients between calcite and aqueous solution. Geochem. J., 40, 425-435.


Review

For citations:


Znamensky S.E. Rare earth elements and yttrium in calcite and pyrite of the Orlovka gold deposit (the Southern Urals). LITHOSPHERE (Russia). 2017;(1):135-141. (In Russ.)

Views: 481


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)