Preview

LITHOSPHERE (Russia)

Advanced search

The geological-genetic model of Carlin type gold deposits

Abstract

The Carlin type gold deposits (CTGD) presents large metasomatic bodies of jasperoids in carbonate host rocks, that contain finely dispersed submicroscopic gold in disseminated pyrite or marcasite. The deposits occur in ore clusters that are concentrated along the rather long trends (faults) in the bottom plate of the regional Ro- berts Mountain thrust fault. In recent years, production of gold of this type deposits in the USA alone amounts to 9-10% of the world. The amount of gold produced and in reserves inventory exceeds 10000 tons. Exploration work over the past 10 years have shown that small-area of clusters may have considerable resources at depth. As part of the geological model discussed of the article highlights CTGD classification features, and in the genetic part - to the indicator factors of mineralization. The CTGD formed in a narrow time interval from 42 to 34 Ma, which corresponds to a change in the compression mode to expansion and rejuvenation of magmatism in northern Nevada. No known coeval porphyry copper, skarn or distal Ag-Pb-Zn mineralization in the clusters of CTGD. Similar hydrothermal alteration and ore paragenesis are typical for CTGD: dissolution and silicification of carbonate, sulphidation of Fe in the rock, formation of Au-bearing arsenian pyrite in closed system, and late in open-space deposition of orpiment, realgar and stibnite. Ore signature is Au-Tl-As-Hg-Sb-(Te)-Ва, with low Ag and base metals. There is a high correlation between Au and As, Au, and Tl. The Au/Ag ratio is about 10. Non-boiling ore fluids ranged from ~180 to 240oC and were of low salinity (mostly <6 wt % NaCl eq.) and CO2-be- aring (<4 mol %)/ Illite and local kaolinite indicate acidic fluids. CTGD was formed at a depth of about 3 km.

About the Authors

A. V. Volkov
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of RAS
Russian Federation


A. A. Sidorov
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of RAS
Russian Federation


References

1. Бадалов С.Т. (1972) О причинах возникновения концентрации золота в сульфидных минералах. Узбекский геологический журнал, (2), 75-82.

2. Волков А.В. (2010) Вкрапленные золото-сульфидные месторождения Северо-Востока России: особенности поисковой геолого-генетической модели. Современные проблемы рудной геологии, петрологии, минералогии и геохимии. М.: ИГЕМ РАН, 37-59.

3. Волков А.В., Серафимовский Т., Кочнева Н.Т., Томсон И.Н., Тасев Г. (2006) Au-As-Sb-Tl эпитермальное месторождение Алшар (Южная Македония). Геология рудн. месторождений, 48(3), 205-224.

4. Волков А.В., Сидоров А.А. (2001) Уникальный золоторудный район Чукотки. Магадан: СВКНИИ ДВО РАН, 180 с.

5. Волков А.В., Сидоров А.А. (2005) Об условиях образования золото-сульфидных вкрапленных руд. Докл. АН, 403(2), 220-223.

6. Волков А.В., Сидоров А.А., Гончаров В.И., Сидоров В.А. (2002) Золото-сульфидные месторождения вкрапленных руд Северо-востока России. Геология рудн. месторождений, 44(3), 179-197.

7. Генкин А.Д. (1998) Золотоносный арсенопирит из золоторудных месторождений: внутреннее строение зерен, состав, механизм роста и состояние золота. Геология рудн. месторождений, 40 (6), 551-557.

8. Мурзин В.В., Сазонов В.Н., Ронкин Ю.Л. (2010) Модель формирования Воронцовского золоторудного месторождения на Урале (Карлинский тип): новые данные и проблемы. Литосфера, (6), 66-73.

9. Новожилов Ю.И., Гаврилов А.М. (1999) Золото-сульфидные месторождения в терригенных углеродистых толщах. М.: ЦНИГРИ, 220 с.

10. Сидоров А.А., Волков А.В. (2000) О некоторых аналогиях в строении и составе рудных залежей на золото-сульфидных месторождениях Карлин (США, штат Невада) и Майское (Россия, Чукотка). Докл. АН, 375(6), 807-811.

11. Сидоров А.А., Томсон И.Н. (2001) Рудоносность черносланцевых толщ: сближение альтернативных концепций. Вестн. РАН, 70(8), 719-724.

12. Томсон И.Н., Сидоров А.А., Полякова А.П., Полохов В.П. (1984) Графит-ильменит-сульфидная минерализация в рудных районах Востока СССР. Геология рудн. месторождений, (6), 19-21.

13. Тюкова Е.Э., Ворошин С.В. (2007) Состав и парагенезисы арсенопирита в месторождениях и вмещающих породах Верхне-Колымского региона (к интерпретации генезиса сульфидных ассоциаций). Магадан: СВКНИИ ДВО РАН, 107 с.

14. Arehart G.B., Chrysoulis S.L., Kesler S.E. (1993) Gold and arsenic iron sulfides from sediment-hosted disseminated gold deposits. Econ. Geol., 88(2), 171-196.

15. Bawden T.M., Einaudi M.T., Bostick B.C., Meiborn A., Wooden J., Norby J.W., Orobona M.J.T., Chamberlain C.P. (2003) Extreme δ34S depletions in ZnS at the Mike gold deposit, Carlin trend, Nevada; Evidence for bacteriogenic supergene sphalerite. Geology, 31(6), 913-916.

16. Berger V.I., Mosier D.L., Bliss J.D., Moring B.C. (2014) Sediment-Hosted Gold Deposits of the World-Database and Grade and Tonnage Models. Open-File Report 2014-1074, June 2014, Virginia, Reston: U.S. Geological Survey. 46 p.

17. Bloomstein E.I., Massingill G.L., Parratt R.L., Pelto-nen D.R. (1991) Discovery, geology, mineralization of the Rabbit Creek gold deposit, Humboldt County, Nevada. Geology and ore deposits of the Great Basin. Reno: Geological Society of Nevada, 821-843.

18. Cline J.S., Hofstra A.H., Muntean J.L., Tosdal R.M., Hickey K.A. (2005) Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models. Econ. Geol. 100th Anniversary Volume. Ed. by J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Ri-chards. Society of Economic Geologists, 451-484.

19. Cline J.S., Stuart F.M., Hofstra A.H., Premo W., Riciputi L., Tosdal R.M., Tretbar D.R. (2003) Multiple sources of ore-fluid components at the Getchell Carlin-type gold deposit, Nevada, US. Mineral exploration and sustainable development. Rotterdam: Millpress, 2, 965-968.

20. Emsbo P., Hofstra A.H., Launa E.A. (2003) Origin of high-grade gold ore, source of ore fluid component, and genesis of the Meikle, and Neighboring Carlin-type deposits, Northern Carlin trend, Nevada. Econ. Geol., 98(6), 1069-1105.

21. Gammons C.H. (1997) Thermochemical sulfate reduction: A key step in the origin of sediment-hosted disseminated gold deposits. Soc. Econ. Geol. Guidebook Series, 28, 141-146.

22. Genkin A.D., Bortnikov N.S., Cabri L., Wagner F.E., Stanley C.Y., Safonov Yu.G., McMahen G., Friedl J., Kerzin A.L., Gamyanin G.N. (1998) A multilevel study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia Russian Federation. Econ. Geol., 93(4), 463-487.

23. Giggenbach W.F. (1997) The origin and evolution of fluids in magmatic-hydrothermal systems. Geochemistry of hydrothermal ore deposits. 3rd ed. New York: Wiley and Sons, 737-796.

24. Gize A.P. (1999) Organic alteration in hydrothermal sulfide ore deposits. Econ. Geol., 94(5), 967-979.

25. Hickey K.A., Donelick R.A., Tosdal R.M., McInnes B.I.A. (2003) Restoration of the Eocene landscape in the Carlin-Jerritt Canyon mining district. Constraining depth of mineralisation for Carlin-type Au deposits using low-temperature apatite thermochronology [abs.]. Geological Society of America Abstracts with Program. 35(6), 358.

26. Hofstra A.H., Cline J.S. (2000) Characteristics and models for Carlin-type gold deposits. Econ. Geol., 13(2), 163-220.

27. Hofstra A.H., Snee L.W., Rye R.O., Folger H.W., Phinisey J.D., Loranger R.J., Dahl A.R., Naeser C.W., Stein H.J., Lewchuk M. (1999) Age constraints on Jerritt Canyon and other Carlin-type gold deposits in the western United States-relationship to Mid-Tertiary extension and magmatism. Econ. Geol., 94(5), 769-802.

28. Hulen J.B., Collister J.W. (1999) The oil-bearing, Carlin-type gold deposits of Yankee basin, Alligator Ridge district, Nevada. Econ. Geol., 94(6), 1029-1050.

29. Hunt J.M. (1996) Petroleum geochemistry and geology. N. Y.: Freeman, 743 p.

30. Jones C., Sonder L., Unruh J.R. (1998) Lithospheric gravitational potential energy and past orogenesis: Implications for conditions of initial Basin and Range and Laramide deformation. Geology, 26, 639-642.

31. Kennedy B.M., Kharaka Y.K., Evans W.C., Ellwood A., DePaolo D.J., Thordsen J.J., Ambats G., Mariner R.H. (1997) Mantle fluids in the San Andreas fault system, California. Science, 278, 1278-1281.

32. Kesler S.E., Fortuna J., Jeffrey Z.Ye. (2003) Evaluation of the role of sulfidisation in deposition of gold Screamer section of the Betze-Post Carlin-type deposit, Nevаda. Econ. Geol., 98(6), 1137-1157.

33. Leventhal J.S., Giordano T.H. (2000) The nature and roles of organic matter associated with ores and ore-forming systems: An introduction. Econ. Geol., 95(1), 1-25.

34. Madrid R.J., Roberts R.J. (1991) Origin of gold belts in north central Nevada. Geology and Ore Deposits of the Great Basin, Field Trip Guidebook. Compendium. Reno: Geological Society of Nevada, 927-939.

35. Muntean J.L., Cline J.S., Simon A.C., Longo A.A. (2011) Magmatic hydrothermal origin of Nevada’s Carlin-type gold deposits. Nature Geos., (4), 122-127.

36. Murphy J.B., Oppliger G.L., Brimhall Jr. G.H., Hynes A. (1998) Plume-modified orogeny: An example from the western United States. Geology, 26(8), 731-734.

37. Nutt C.J., Hofstra A.H. (2003) Alligator Ridge: A shallow Carlin-type gold district. Econ. Geol., 98(6), 1225-1241.

38. Ohmoto H., Rye R.O. (1979) Isotopes of sulfur and carbon. Geochemistry of hydrothermal ore deposits. N. Y.: J. Willy and Sons, 509-567.

39. Oppliger G.L., Murphy J.B., Brimhall Jr. G.H. (1997) Is the ansestral Yellowstone hotspot responsible for the Tertiary “Carlin” mineralization in the Great Basin of Nevada? Geology, 25(7), 627-630.

40. Palenik C.S., Utsunomiya S., Reich M., Kesler S.E., Wang L., Ewing R.C. (2004) “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. Amer. Min., 89(8), 1359-1366.

41. Percival T.J., Radtke A.S. (1994) Sedimentary rock-hosted disseminated gold mineralization in the Alsar district, Macedonia. Canad. Mineral., 32, 649-655.

42. Percival T.J., Radtke A.S., Jancovic S.R. (1990) Gold mineralization of the Carlin type in the Alsar district, Macedonia, Yugoslavia. Proc. of the Eight Quadrennial IAGOD symposium. Ottawa (Canada), 637-646.

43. Peters S.G. (2002) Geology, geochemistry, and geophysics of sedimentary-hosted Au deposits in P.R. China: U.S. Geological Survey Open-File Report: 02-131, Version 1.0, http://geopubs.wr.usgs.gov/open-file/of02-131/OF02-131.pdf.

44. Radtke A.S., Rye R.G., Dickson P.W. (1980) Geology and stable isotope studies of the Carlin gold deposits, Nevada. Econ. Geol., 75(5), 641-672.

45. Reich M., Kesler S.E., Utsunoyiya S., Palenik C.S., Chryssoulis S., Ewing R.C. (2005) Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta, 69, 2781-2796.

46. Seedorff E. (1991) Magmatism, extension, and ore deposits of Eocene to Holocene age in the Great Basin-Mutual effects and preliminary proposed genetic relationships. Geology and Ore Deposits of the Great Basin. Symposium Proc.: Geological Society of Nevada. Reno, 133-178.

47. Teal L., Jackson M. (2002) Geologic overview of the Carlin Trend gold deposits. Gold Deposits of the Carlin trend: Nevada Bureau of Mines and Geology, 111, 9-19.

48. Theodore T.G., Kotlyar B.B., Singer D.A. (2003) Applied geochemistry; Geology and Mineralogy of the Northernmost Carlin trend, Nevada. Econ. Geol., 98(2), 287-316.

49. Tosdal R.M., Hickey K.A., Donelick R.A., Arehart G.B., Chakurian A.M. (2003) Distinguishing hydrothermal events using apatite fission-track thermochronology; Implications for Au-mineralization in the Carlin-Jerritt Canyon region, northern Nevada. Geological Society of America Abstracts with Program, 35(6), 402.

50. Tosdal R.M., Wooden J.L., Kistler R.W. (2000) Inheritance of Nevadan mineral belts from Neoproterozoic continental breakup. Geology and Ore Deposits 2000: The Great Basin and Beyond. Geological Society of Nevada Symposium Proc. Reno, 451-466.

51. Vikre P.G. (2000) Subjacent crustal sources of sulfur and lead in eastern Great Basin metal deposits. Geol. Soc. Amer. Bull., 112, 764-782.

52. Volkov A.V. (2007) Model of Multilevel Structure of Ore-Columns and Conditions of Formation of Large and Superlarge Au-As-Sb-Disseminated Deposits of Invisible, Refractory Gold. Digging deeper. Рroc. of the IX biennial SGA meeting. Dublin, Ireland, 18-21 August 2007, 1, 573-576.

53. Wells J.D., Mullens T.E. (1973) Gold-bearing arsenic pyrites, determined by microprobe analysis, Cortes and Carlin gold mines, Nevada. Econ. Geol., 68(2), 187-201.

54. Westaway R. (1999) The mechanical feasibility of low-angle normal faulting. Tectonophysics, 308, 407-443.


Review

For citations:


Volkov A.V., Sidorov A.A. The geological-genetic model of Carlin type gold deposits. LITHOSPHERE (Russia). 2016;(6):145-165. (In Russ.)

Views: 1660


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)