Preview

LITHOSPHERE (Russia)

Advanced search

Element composition of ground water and speleothem “moon milkˮ in a karst cave Proshchal’naya (Far East)

https://doi.org/10.24930/1681-9004-2018-18-6-928-941

Abstract

Object of research. The aim of this work was the comparative analysis of element composition of groundwater (drip, fracture), water from the interior of the watercourse in a karst cave Proshchal’naya (Khabarovsk Territory) and the surface water of the nearest river Sagdy-Selanka. The great interest was the study of speleothem (dropstones) “moon milk” in the cave Proshchal’naya. Materials and methods. Speleothem “moon milk” was investigated with a scanning electron microscope (EVO-40HV, CarlZeiss, Germany) and silicon-drift x-ray detector X-MAX 80 мм2 . By ICP-MS method a comparative analysis of element composition of groundwater (drip, fracture), water from an internal stream in the cave Proshchal’naya and surface water of the river Sagdy-Selenka were carried out. Results. Maximum concentrations of calcium, iron and manganese was installed in the spring, between drip and fracture water and magnesium – in flowing waters (inland watercourse caves and Sagdy-Selanka R.). It was determined that visually plastic and homogeneous mass of speleothem “moon milk” is heterogeneous and contains various microstructures. Tubular microstructures were represented by richer elemental compo sition (C, O, Ca, Fe, Mn, Si, Al, and S) compared with club-shaped formations (C, O, Ca, and Na). The binding matrix in the composition of the “moon milk” were reticular structures similar to actinomycente mycelium and bacterial films. Findings. The results of studies conducted in a monsoon climate may be interesting for researchers which study karst processes in other climatic zones.

About the Authors

Lubov’ M. Kondratyeva
Institute of water and ecological problems, Far East Branch of RAS
Russian Federation
65 Kim-Yu-Chen st., Khabarovsk 680000


Oksana S. Polevskaya
Institute of water and ecological problems, Far East Branch of RAS
Russian Federation
65 Kim-Yu-Chen st., Khabarovsk 680000


Evgeniya M. Golubeva
Yu.A.. Kosygin Institute of tectonics and geophysics, Far East Branch of RAS
Russian Federation
65 Kim-Yu-Chen st., Khabarovsk 680000


Anna V. Shtareva
Yu.A.. Kosygin Institute of tectonics and geophysics, Far East Branch of RAS
Russian Federation
65 Kim-Yu-Chen st., Khabarovsk 680000


Natal’ya S. Konovalova
Yu.A.. Kosygin Institute of tectonics and geophysics, Far East Branch of RAS
Russian Federation
65 Kim-Yu-Chen st., Khabarovsk 680000


References

1. Abdrakhmanov R.F., Popov V.G. (2010) Geokhimiya i formirovanie podzemnykh vod Yuzhnogo Urala [Geochemistry and formation of groundwater in the South Urals]. (Ed. V.N. Puchkov). Ufa, AN RB, Gilem Publ., 420 p. (In Russian)

2. Aloisi G., Gloter A., Krüger M., Wallmann K., Guyot F., Zuddas P. (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 34, 1017-1020.

3. Bagrintseva K.I. (1999) Usloviya formirovaniya i svoistva karbonatnykh kollektorov nefti i gaza [Conditions of formation and properties of carbonate reservoirs of oil and gas]. Moscow, RGGU. Publ. (II), 285 p. (In Russian)

4. Benzerara K., Miot J., Morin G., Ona-Nguema G., SkouriPanet F., Ferard C. (2011) Significance, mechanisms and environmental implications of microbial Biomineralization. C. R. Geosci., 343(2-3), 160-167.

5. Bersenev Yu.I. (1989) Karst Dal’nego Vostoka [Karst of the Far East]. Moscow, Nauka Publ., 172 p. (In Russian)

6. Bindschedler S., Cailleau G., Braissant O., Millière L., Job D., Verrecchia E.P. (2014) Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes? Biogeosci., 11, 2809-2825.

7. Bindschedler S., Millière L., Cailleau G., Job D., Verrecchia E.P. (2012) An ultrastructural approach to analogies between fungal structures and needle fibre calcite. Geomicrobiol. J., 29, 301-313.

8. Blyth A.J., Frisia S. (2008) Molecular evidence for bacterial mediation of calcite formation in cold highaltitude caves. Geomicrobiol. J., 25, 101-111.

9. Bontognali T.R., Vasconcelos C., Warthmann R., Dupraz C., Bernasconi S.M., McKenzie J.A. (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36, 663-666.

10. Cailleau G., Verrecchia E.P., Braissant O., Emmanuel L. (2009) The biogenic origin of needle fibre calcite. Sedimentol., 56, 1858-1875.

11. Canaveras J.C., Cuezva S., Sanchez-Moral S., Lario J., Laiz L., Gonzalez J.M., Saiz-Jimenez C. (2006) On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, 93, 27-32.

12. Cuthbert M.O., Rau G.C., Andersen M.S., Roshan H., Rutlidge H., Marjo C.E., Markowska M., Jex C.N., Graham P.W., Mariethoz G., Acworth R.I., Baker A. (2014) Evaporative cooling of speleothem drip water. Sci. Rep., 4:5162. doi: 10.1038/srep05162.

13. Dublyanskii V.N., Dublinskaya G.N. (2004) Karstovedenie. Ch. I [Karstology. Pt I]. Perm, Perm. Stat. Univ. Publ., 306 p. (In Russian)

14. Dupraz C., Reid R.P., Braissant O., Decho A.W., Norman R.S., Visscher P.T. (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev., 96, 141-162.

15. Fairchild I.J., Borsato A., Tooth A.F., Frisia S., Hawkesworth C.J., Huang Y.M., McDermott F., Spiro B. (2000) Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem. Geol., 166, 255-269.

16. Fru E.С., Piccinelli P., Fortin D. (2012) Insights into the Global Microbial Community Structure Associated with Iron Oxyhydroxide Minerals Deposited in the Aerobic Biogeosphere. Geomicrobiol. J., 29(7), 587-610.

17. Gresov A.I., Obzhirov A.I., Korovitskaya Ye.V., Shakirov R.B. (2009) Methane-bearing and prospects of methane resources development from coal layers in the south of Far East basins. Tikhookean. Geol., 28(2), 103- 116. (In Russian)

18. Hill C.A., Forti P. (2007) Cave mineralogy and the NSS: past, present, future. J. Cave Karst Stud., 69, 35-45.

19. Kadebskaya O.I. (2016) Processes of modern mineral formation in the carbonate caves of the Urals, associated with various microclimatic conditions. Geogr. Vestn., 1(36), 5-17. (In Russian).

20. Kondrat’yeva L.M., Litvinenko Z.N. (2014) Formation of biofilms by microbial complexes of groundwater in vitro. Biotekhnol., (3), 73-82. (In Russian)

21. Kondrat’yeva L.M., Polevskaya O.S. (2017) Microorganisms and the formation of speleothem “moonmilk” in karst caves. Biosfera, 9(2), 152-165. (In Russian)

22. Kondrat’yeva L.M., Polevskaya O.S., Litvinenko Z.N., Golubeva E.M., Konovalova N.S. (2016) Role of the Microbial Community in Formation of Speleothem (Moonmilk) in the Snezhnaya Carst Cave (Abkhaziya). Microbiol., 85(5), 629-637.

23. Konhauser K., Riding R. (2012) Bacterial Biomineralization. Fundamentals of Geobiology. (Eds H. Knoll, D.E. Canfield, K.O. Konhauser). John Wiley & Sons, Ltd., 105- 130.

24. Kraynov S.R., Ryzhenko B.N., Shvets V.M. (2012) Geokhimiya podzemnykh vod. Teoreticheskie, prikladnye i ekologicheskie aspekty [Geochemistry of groundwater. Theoretical, applied and environmental aspects]. Moscow, TsentrLitNefteGaz Publ., 672 p. (In Russian)

25. Kulakov V.V., Kondrat’eva L.M., Golubeva E.M. (2010) Geological and biogeochemical conditions for the formation of a high content of iron and manganese in the water of the Amur River. Tikhookean. Geol., 29(6), 66- 76. (In Russian)

26. Lacelle D., Lauriol B., Ian D. (2004) Seasonal isotopic imprint in moonmilk from Caverne de l’Ours (Quebec, Canada): implications for climatic reconstruction. Can. J. Earth Sci., 41(12), 1411-1423.

27. Liu H., Liu Z., Macpherson G.L., Yang R., Chen B., Sun H. (2015) Diurnal hydrochemical variations in a karst spring and two ponds, Maolan Karst Experimental Site, China: Biological pump effects. J. Hydrol., 522, 407-417.

28. Maciejewska M., Adam D., Naômé A., Martinet L., Tenconi E., Całusińska M., Delfosse P., Hanikenne M., Baurain D., Compère P., Carnol M., Barton H.A., Rigali S. (2017) Assessment of the Potential Role of Streptomyces in Cave Moonmilk Formation Front. Microbiol., 8, 1181-1199.

29. Maciejewska M., Pessi I.S., Arguelles-Arias A., Noirfalise P., Luis G., Ongena M., Barton H., Carnol M., Rigali S. (2015) Streptomyces lunaelactis sp. nov., a novel ferroverdin A-producing Streptomyces species isolated from a moonmilk speleothem. (Antonie van Leeuwenhoek). J. Microbiol., 107(2), 519-531.

30. Makhinov A.N., Kryukova M.V., Makhinova A.F. (2016) The role of karst phenomena in the formation of the valley landscape of the Sagdi-Selanka River (central Sikhote-Alin). Vestn. DVO RAN, (5), 86-93. (In Russian)

31. Maksimovich N.G., Bel’tyukova N.V. (1981) Secondary minerals of carbonate karst caves. Perm. Peshchery. V. 18, 59-70. (In Russian)

32. Mazina S., Semikolennykh A. (2010) Different forms of moonmilk of the caves of Russia in the light of the problem of genesis. Perm. Peshchery. V. 33, 34-44. (In Russian)

33. Musgrove M., Banner J.L. ( 2004) Controls on the spatial and temporal variability of vadosedripwater geochemistry: Edwards Aquifer, central Texas. Geochim. Cosmochim. Acta., 68(5), 1007-1020.

34. Petrov E.S., Novorotskii P.V., Lenshin V.T. (2000) Klimat Khabarovskogo kraya i Evreyskoi avtonomnoi oblasti [The climate of the Khabarovsk Territory and the Jewish Autonomous Region]. Vladivostok; Khabarovsk, Dal’nauka Publ., 173 p. (In Russian)

35. Potekhina Zh.S. (2006) Metabolizm Fe(III) vosstanavlivayushchikh bakterii [The Methabolism of Fe (III)-reducing bacteria]. Tol’yatti, IEVB RAN, 225 p. (In Russian)

36. Richter D.K., Immenhauser A., Neuser R.D. (2008) Electron backscatter diffraction documents randomly orientated c-axes in moonmilk calcite fibres: evidence for biologically induced precipitation. Sedimentol., 55, 487-497.

37. Sanchez-Moral S., Portillo M.C., Janices I., Cuezva S., Fernandez-Cortes A., Cañaveras J.C., Gonzalez J.M. (2012) The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira. Cave. Geomorphology, 139(2), 285-292.

38. Sánchez-Román M., Vasconcelos C., Schmid T., Dittrich M., McKenzie J.A., Zenobi R., Rivadeneyra M.A. (2008) Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology, 36(11), 879-882.

39. Shankar N., Achyuthan H. (2007) Genesis of calcic and petrocalcic horizons from Coimbatore, Tamil Nadu: Micromorphology and geochemical studies. Quat. Int., 175, 140-154.

40. Shvartsev S.L. (2012) Internal evolution of the geological water-rock system. Vestn. Ross. Akad. Nauk, (3), 242- 251. (In Russian)

41. Shvartsev S.L., Ryzhenko B.N., Alekseyev V.A. (2007) Geologicheskaya evolyutsiya i samoorganizatsiya sistemy voda–poroda [Geological evolution and self-organization of the water–rock system]. Novosibirsk, SO RAN Publ., 389 p. (In Russian).

42. Smith A.C., Wynn P.M., Barker P.A., Leng M.J. (2015) Drip water electrical conductivity as an indicator of cave ventilation at the event scale. Sci. Total Environ., 1(532), 517-527.

43. Spötl C., Fohlmeister J., Cheng H., Boch R. (2016) Modern aragonite formation at near-freezing conditions in an alpine cave, Carnic Alps, Austria. Chem. Geol., 435, 60- 70.

44. Summers E.A., Paoletti M.G., Beggio M., Dorigo L., Pamio A., Gomiero T., Furlan C., Brilli M., Dreon A.L., Bertoni R., Squartini A. (2013) Comparative microbial community composition from secondary carbonate (moonmilk) deposits: implications for the Cansiliella servadeii cave hygropetric food web. Int. J. Speleol., 42(3), 181-192.

45. Tisato N., Torriani S.F., Monteux S., Sauro F., De Waele J., Tavagna M.L., De Angeli I.M., Chailloux D., Renda M., Eglinton T.I., Bontognali T.R. (2015) Microbial mediation of complex subterranean mineral structures. Sci. Rep., 5:15525. doi: 10.1038/srep15525.

46. Vesper D.J., Loop C.M., White W.B. (2001) Contaminant transport in karst aquifers. Theoret. Appl. Karstol., (13- 14), 101-111.

47. Wassenburg J.A., Immenhauser A., Richter D.K., Jochum K.P., Fietzke J., Deininger M., Goos M., Scholz D., Sabaoui A. (2012) Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence. Geochim. Cosmochim. Acta, 92, 23-47.

48. Wong C.I., Banner J.L., Musgrove M. (2011) Seasonal drip water Mg/Ca and Sr/Ca variations driven by cave ventilation: implications for and modeling of speleothem paleoclimate records. Geochim. Cosmochim. Acta, 75, 3514-3529.

49. Yang H., Lu R., Downs R.T., Costin G. (2006) Goethite, α-FeO(OH), from single-crystal data. Acta Crystallographica, 62, 250-252.

50. Zeng C., Liu Z., Zhao M., Yang R. (2016) Hydrologicallydriven variations in the karst-related carbon sink fluxes: Insights from high-resolution monitoring of three karst catchments in Southwest China. J. Hydrol., 533, 74-90.

51. Zhabinskaya T.B. (2003) Formation of the chemical composition of the ground waters of the Vorontsov karst massif (Western Caucasus). Zapiski Gornogo Instituta, 155(2), 27-29. (In Russian)

52. Zhang F., Xu H., Konishi H., Shelobolina E.S., Roden E. (2012) Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite. Amer. Miner., 97(4), 556-567.


Review

For citations:


Kondratyeva L.M., Polevskaya O.S., Golubeva E.M., Shtareva A.V., Konovalova N.S. Element composition of ground water and speleothem “moon milkˮ in a karst cave Proshchal’naya (Far East). LITHOSPHERE (Russia). 2018;(6):928-941. (In Russ.) https://doi.org/10.24930/1681-9004-2018-18-6-928-941

Views: 607


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)