Preview

LITHOSPHERE (Russia)

Advanced search

Material composition and formation conditions of the Yubryshka titanium-magnetite ore deposit

https://doi.org/10.24930/2500-302X-2025-25-3-546-571

EDN: EWNBEI

Abstract

Research subject. The Yubryshka intrusion with titanomagnetite mineralization.

Materials and methods. Research materials included rock and ore samples from the Yubryshka intrusion. The concentration of major oxides was determined by X-ray fluorescence at the Institute of Geology, UFIC RAS (Ufa), on a VRA-30 spectrometer (Carl Zeiss, Germany) using an X-ray tube with a W-anode (30 kV, 40 mA). The mineralogy study was carried out using a Tescan Vega Compact scanning electron microscope equipped with an Xplorer Oxford Instruments energy-dispersive analyzer (IG UFITs RAS, Ufa).

Results and conclusions. The petrochemical analysis indicated the isochemical nature of metamorphism in the rocks of the Yubryshka intrusion. In comparison with the rocks of the Kusa-Kopan complex, the Yubryshka analogues are characterized by a lower degree of differentiation, consisting in the absence of varieties of extreme basicity. Clinopyroxene, amphibole, epidote, fluorapatite, titanite, micas, chlorite, barite, zircon, ore minerals (sulfides, oxides) are described with a varying degree of detail. The genetic conditions for the formation of amphibole from the Yubryshka deposit were found to characterize the metamorphic history of rock transformation, being directed from igneous amphibole (T ≈ 800°C, P ≈ 3.2 kbar) to metamorphogenic amphibole (T ≥ 550°C, P ≈ 7 kbar) with temperature stabilization when pressures decrease to > 3 kbar. The calculations established that the decomposition temperature of ilmenite–titanomagnetite aggregates ranges within 559–375°С. In this case, elements of zoning are observed when re-equilibration of the system in the edge parts of the crystals occurs at lower temperatures. The simulation of the crystallization process using the COMAGMAT software found that changes in the chemical composition of the melt are implemented through the filter-pressing mechanism. The formation of the ore horizon was caused by a mass crystallization of magnetite together with clinopyroxene and plagioclase at a temperature of 1097°С. This model satisfactorily describes the observed structure of the ore horizon, namely, its location in the upper part of the intrusive body and the disseminated nature of the ores.

About the Authors

S. G. Kovalev
Institute of Geology, UFRC RAS
Russian Federation

16/2 Karl Marx st., Ufa 450077



S. S. Kovalev
Institute of Geology, UFRC RAS
Russian Federation

16/2 Karl Marx st., Ufa 450077



References

1. Ablizin B.D., Popov I.B (1973) Geological map of the Urals, scale 1 : 50 000. Sheet P-40-118-G. Report of the Vels detachment on search and survey work on the western slope of the Northern Urals in the upper reaches of the Vels River for 1970–1971. V. 1–5. GF “Committee of Natural Resources for the Perm Region”. (In Russ.)

2. Alekseev A.A., Alekseeva G.V., Kovalev S.G. (2000) Layered intrusions of the western slope of the Urals. Ufa, Gilem Publ., 188 p. (In Russ.)

3. Alekseev A.A., Alekseeva G.V., Kovalev S.G. (2003) Differentiated intrusions on the western slope of the Urals. Ufa, Gilem Publ., 171 p. (In Russ.)

4. Andersen D.J., Lindsley D.H. (1985) New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. Abstract for the AGU 1985 spring meeting, Eos Transactions, American Geophysical Union, 66(18), 416.

5. Ariskin A.A., Barmina G.S., Frenkel’ M.Yu. (1986) Simulation of low-pressure crystallization of tholeiitic magma at fixed oxygen fugacity. Geochem. Int., 24(5), 92-100. (In Russ.)

6. Ariskin A.A., Frenkel M.Yu., Barmina G.S., Nielsen R. (1993) COMAGMAT: A Fortran program to model magma differentiation processes. Comput. Geosci., 19(8), 1155-1170. https://doi.org/10.1016/0098-3004(93)90020-6

7. Armbruster T., Bonatstsi P., Akasaka M., Bermanets V., Shopen K., Zhire R., Kheus-Assbikhler S., Leibsher A., Menchetti S., Pan Ya., Pazero M. (2006) Recommended nomenclature for epidote group minerals (summary). Zap. RMO, 135(6), 19-23. (In Russ.)

8. Aulov B.N., Vladimirtseva Yu.A., Gvozdik N.I., Korol’kova Z.G., Levin F.D., Lipaeva A.V., Potashova M.N., Samozvantsev V.A. (2015) State geological map of the Russian Federation. Scale 1 : 200 000. 2nd ed. Ser. South Ural. Sheet N-40-XII – Chrysostom. Explanatory letter. Moscow, VSEGEI, 365 p. (In Russ.)

9. Bai Z.-J., Zhong H., Naldrett A.J., Zhu W.-G., Xu G.-W. (2012) Whole-rock and mineral composition of constraints on the genesis of the giant Hongge Fe–Ti–V oxide deposit in the Emeishan Large Igneous Province, Southwest China. Econ. Geol., 107(3), 507-524. https://doi.org/10.2113/econgeo.107.3.507

10. Bea F., Fershtater G.B., Corretge L.G. (1992) The geochemistry of phosphorus in granite rocks and the effects of aluminium. Lithos, 48, 43-56.

11. Brunsmann A., Franz G., Heinrich W. (2002) Experimental investigation of zoisite-clinozoisite phase equilibria in the system CaO–Fe2O3–Al2O3–SiO2–H2O. Contrib. Mineral. Petrol., 143, 115-130.

12. Charlier B., Grove T.L. (2012) Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib. Mineral. Petrol., 164, 27-44. https://doi.org/10.1007/s00410-012-0723-y

13. Chirkov I.V. (1940) Minerals of the Vishera region in the Northern Urals. Tr. GGI UFAN SSSR, vyp. 1, 38 p. (In Russ.)

14. Deere W.A., Howie R.A., Zussman J. (1966) Rock-forming minerals. V. 4: Framework silicates. Moscow, Mir Publ., 482 p. (In Russ.)

15. Féménias O., Mercier J.C.C., Nkono C., Diot H., Berza T., Tatu M., Demaiffe D. (2006) Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania). Amer. Miner., 91, 73-81. https://doi.org/10.2138/ am.2006.1869

16. Fominykh V.G., Kraeva Yu.P., Larina N.V. (1983) New data on the Yubryshkinskoye titanomagnetite deposit. Tr. IGG UNTs AN SSSR, vyp. 130, 126-128. (In Russ.)

17. Formations of titanomagnetite ores and ferruginous quartzites: Iron ore deposits of the Urals. (1984) (Ed. by A.M. Dymkin). Sverdlovsk, UNTs AN SSSR, 264 p. (In Russ.)

18. Frenkel’ M.Ya., Yaroshevskii A.A., Ariskin A.A., Barmina G.S., Koptev-Dvornikov E.V., Kireev B.S. (1988) Dynamics of intrachamber differentiation of mafic magmas. Moscow, Nauka Publ., 214 p. (In Russ.)

19. Hey M.H. (1954) A new review of the chlorites. Miner. Mag., 30, 277-292. https://doi.org/10.1180/minmag.1954.030.224.01

20. Jakobsen J.K., Veksler I.V., Tegner C., Brooks C.K. (2011) Crystallization of the Skaergaard intrusion from an tmulsion of immiscible iron and silica-rich liquids: Evidence from melt inclusions in plagioclase. J. Petrol., 52(2), 345-373. https://doi.org/10.1093/petrology/egq083

21. Janousec V. (2006) Saturnin, R language script for application of accessory-mineral saturation models in igneous geochemistry. Geol. Carpathica, 57(2), 131-142.

22. Kholodnov V.V., Bocharnikova T.D., Shagalov E.S. (2012) Composition, age and genesis of magnetite-ilmenite ores of the Middle Riphean stratified Medvedevsky massif (Kusinsky-Kopansky complex of the Southern Urals). Lithosphere (Russia), (5), 145-165. (In Russ.)

23. Klimenko B.V., Borisov N.E., Rybal’chenko A.Ya. (1998) Report on geological additional study at a scale of 1 : 50 000 of the Shudyinskaya area. Sheets P-40-118-G, R-40-119-V, G – z.p., R-40-130-B with general searches in the Krasnovishersky district of the Perm region, carried out in 1989–1998. Perm. (In Russ.)

24. Kovalev S.G. (2008) Late Precambrian rifting in the history of the development of the western slope of the Southern Urals. Geotectonika, (2), 68-79. (In Russ.)

25. Kovalev S.G., Kovalev S.S. (2022) Ti–Fe–Cr spinels in differentiated (layered) complexes of the western slope of the Southern Urals: Species diversity and formation conditions. Zap. Gornogo in-ta, 255, 476-492. (In Russ.) https://doi.org/10.31897/PMI.2022.54

26. Kovalev S.G., Kovalev S.S., Sharipova A.A. (2023) First data on rare earth mineralization in acidic rock varieties of the Shatak complex (Southern Urals). Lithosphere (Russia), 23(5), 910-929. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-5-910-929

27. Kovalev S.G., Timofeeva E.A. (2017) Geochemistry of eclogites of the Beloretsk complex (Southern Urals) and the genetic nature of their protoliths. Lithosphere (Russia), (2), 27-48. (In Russ.)

28. Kranidiotis P., MacLean W.H. (1987) Systematic of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Econ. Geol., 82(7), 1808-1911. https://doi.org/10.2113/gsecongeo.82.7.1898

29. Krivovichev V.G., Gul’bin Yu.L. (2022) Recommendations for the calculation and presentation of mineral formulas based on chemical analysis data. Zap. RMO, CLI(1), 114-124. (In Russ.)

30. Leake B.E., Wooley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G. (1997) Nomenclature of amphiboles. Report of the Subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral. Mag., 61, 295-321.

31. Lindsley D.H., Spencer K.J. (1982) Fe–Ti oxide geothermometry: Reducing analyses of coexisting Ti-magnetite (Mt) and ilmenite (Ilm). Abstract for the AGU 1982 spring meeting, Eos Transactions, Amer. Geophys. Union, 63(18), 471.

32. Malyshev I.I., Panteleev P.G., Pek A.V. (1934) Titanium magnetite deposits of the Urals. Leningrad, AN SSSR, 272 p. (In Russ.)

33. Morimoto N., Fabries J., Ferguson A.K., Ginzburg I.V., Ross M., Seifert F.A., Zussman J. (1988) Nomenclature of pyroxenes. Amer. Miner., 73, 1123-1133.

34. Mutch E.J.F., Blundy J.D., Tattitch B.C., Cooper F.J., Brooker R.A. (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Alin-hornblende geobarometer. Contrib. Mineral. Petrol., 171, 85. https://doi.org/10.1007/s00410-016-1298-9

35. Pang K.-N., Zhou M.-F., Lindsley D., Zhao D., Malpas J. (2008) Origin of Fe–Ti oxide ores in mafic intrusions: Evidence from the Panzhihua Intrusion, SW China. J. Petrol., 49(2), 295-313. https://doi.org/10.1093/petrology/egm082

36. Popov I.B., Ablizin B.D. (1974) Sills of greenstone diabases of the Yubryshka mountain and associated titanomagnetite mineralization. Magmatism, metamorphism and mineralization in the geological history of the Urals. Report summary of the III Ural Petrographic Conference. Sverdlovsk, IGG UNTs AN USSR, 66-67. (In Russ.

37. Pribavkin S.V. (2019) Amphibole and biotite of melanocratic rocks from granitoid massifs of the Urals: Composition, relationships, petrogenetic consequences. Lithosphere (Russia), 19(6), 902-918. (In Russ.) https://doi.org/10.24930/1681-9004-2019-19-6-902-918

38. Sharkov E.V. Chistyakov A.V., Shchiptsov V.V., Bogina M.M., Frolov P.V. (2018) Origin of Fe–Ti oxide mineralization in the Middle Paleoproterozoic Eletyozersky syenite-gabbro intrusive complex (North Karelia, Russia). Geol. Rud. Mestorozhd., 60(2), 198-230. (In Russ.) https://doi.org/10.7868/s0016777018020041

39. Smirnov V.I. (1978) Ore deposits of the USSR. In 3 vols. V. 2. Moscow, Nedra Publ., 352 p. (In Russ.)

40. Snitko G.P., Gorbunova M.K., Popova T.N., Suvorov N.I. (2017) State geological map of the Russian Federation. Scale 1 : 200 000. 2nd ed. Perm series. Sheet P-40- ХХIX. Explanatory letter. Moscow, VSEGEI, 144 p. (In Russ.)

41. Steinberg D.S., Fominykh V.G., Kraeva Yu.P., Larina N.V., Chashchukhina V.A., Kholodnov V.V. (1993) About a new type of titanomagnetite mineralization in the Urals. Tr. IGG URO RAN, vyp. 140, 94-96. (In Russ.)

42. Veksler I.V., Charlier B. (2015) Silicate Liquid Immiscibility in Layered Intrusions. Layered Intrusions (Ed. by B.Charlier, O. Namur, R.Latypov, C.Tegner). Dordrecht: Springer, 229-258. https://doi.org/10.1007/978-94-017-9652-1_5

43. Veksler I.V., Dorfman A.M., Borisov A.A., Wirth R., Dingwell D.B. (2007) Liquid immiscibility and the evolution of basaltic magma. J. Petrol., 48(11), 2187-2210. https:// doi.org/10.1093/petrology/egm056

44. Wang C.Y., Zhou M.F. (2013) New textural and mineralogical constraints on the origin of Hongge Fe–Ti–V oxide deposits, SW China. Mineralium Deposita, 48(6), 787-798. https://doi.org/10.1007/s00126-013-0457-4

45. Zheng Y.F., Chen R.X. (2017) Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J. Asian Earth Sci., 145, 46-73.


Review

For citations:


Kovalev S.G., Kovalev S.S. Material composition and formation conditions of the Yubryshka titanium-magnetite ore deposit. LITHOSPHERE (Russia). 2025;25(3):546-571. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-3-546-571. EDN: EWNBEI

Views: 72


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)