Chemical composition, structural features and luminescent properties of Cr-bearing spinel from marbles of the Eastern Slope of the Urals
https://doi.org/10.24930/1681-9004-2025-25-2-263-280
EDN: VTCQAI
Abstract
Research subject and Methods. New data on the impurity composition, Raman spectra and photoluminescence of noble spinel from marbles of the Eastern Slope of the Southern and Middle Urals – the Kuchinsky occurrence (Kochkarsky anticlinorium) and the Alabash occurrence (Murzinsky-Aduysky anticlinorium), as well as the Kukh-i-Lal and Goron deposits (Southwestern Pamir) are presented.
Results. Energy dispersion microanalysis of the chemical composition shows a high chromium content up to #Cr = Cr/(Cr + Al) ~ 0.2 and a low iron content, as well as a deviation in the ratio of divalent and trivalent cations from the stoichiometric in spinel from the Kuchinsky occurrence. The two-mode frequency behavior has been established by Raman spectroscopy in the entire range of compositions corresponding to spinel-magnesiochromite solid solutions. The tetrahedral sublattice vibration parameters – the frequency of the breathing mode and the width of the bending mode of the MgO4 groups – are characterized by the highest concentration sensitivity. The reaction of the spinel tetrahedral sublattice is qualitatively similar when the structure is disordered due to (1) the isomorphous substitution VICr3+ → VIAl3+, (2) the thermally induced inversion IVMg2+ → VIAl3+, VIAl3+ → IVMg2+, (3) the radiation defects; for the analysis of quantitative differences, a diagram "width of the mode of deformation vibrations MgO4 vs. frequency of the lattice mode T(Mg)" is proposed. Variations in the structure and properties of the Cr3+ emission center under disordering have been determined by low-temperature photoluminescence spectroscopy.
Conclusions. The vibrational properties and photoluminescence of chromium ions are determined by several interrelated factors: (1) impurity composition, (2) nonstoichiometry, (3) structure inversion, (4) vacancy defects. The position and relative intensity of zero-phonon N-lines resulting from the Cr3+ emission center distortions are proposed for use as highly sensitive structural probes, in particular, to assess the gemological value of the spinel. The features of the composition, structure, and luminescent properties of the samples of the Kuchinsky occurrence formed at the progressive stage of regional metamorphism under conditions of increasing temperature and pressure are revealed.
Keywords
About the Authors
Yu. V. ShchapovaRussian Federation
Yuliya V. Shchapova
620110; 15 Academician Vonsovsky st.; Ekaterinburg
A. Yu. Kissin
Russian Federation
Aleksandr Yu. Kissin
620110; 15 Academician Vonsovsky st.; Ekaterinburg
N. S. Chebykin
Russian Federation
Nikolai S. Chebykin
620110; 15 Academician Vonsovsky st.; Ekaterinburg
S. L. Votyakov
Russian Federation
Sergey L. Votyakov
620110; 15 Academician Vonsovsky st.; Ekaterinburg
References
1. Ball J.A., Murphy S.T., Grimes R.W., Bacorisen D., Smith R., Uberuaga B.P., Sickafus K.E. (2008) Defect processes in MgAl<sub>2</sub>O<sub>4</sub>, Solid State Sci., 10, 717. doi: 10.1016/j.solidstatesciences.2007.04.005
2. Caracas R., Banigan E.J. (2009) Elasticity and Raman and infrared spectra of MgAl<sub>2</sub>O<sub>4</sub> spinel from density functional perturbation theory. Phys. Earth Planet. Int., 174(1-4), 113-121. doi: 10.1016/j.pepi.2009.01.001
3. Chopelas A., Hofmeister A.M. (1991) Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl<sub>2</sub>O<sub>4</sub> to over 200 kbar. Phys. Chem. Miner., 18(5), 279-293. doi: 10.1007/BF00200186
4. Coll M., Fontcuberta J., Althammer M., Bibes M., Boschker H. et al. (2019) Towards Oxide Electronics: a Roadmap. Appl. Surf. Sci., 482, 1-93. doi: 10.1016/j.apsusc.2019.03.312
5. Cynn H., Anderson O.L., Nicol M. (1993) Effects of cation disordering in a natural MgAl<sub>2</sub>O<sub>4</sub> <sub>4</sub>spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements. Pure Appl. Geophys., 141(2-4), 415-444. doi: 10.1007/978-3-0348-5108-4_11
6. Cynn H., Harma S.K., Cooney T.F., Nicol M. (1992) High-temperature Raman investigation of order-disorder behavior in the MgAl<sub>2</sub>O<sub>4</sub> spinel. Phys. Rev. B., 45(1), 500. doi: 10.1103/PhysRevB.45.500
7. D’Ippolito V. (2013) Linking crystal chemistry and physical properties of natural and synthetic spinels: An UV-VIS-NIR and Raman study. PhD Thesis. The Sapienza University of Rome, Italy, 237 p.
8. D’Ippolito V., Andreozzi G.B., Bersani D., Lottici P.P. (2015) Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spectroscopy, 46(12), 1255-1264. doi: 10.1002/jrs.4764
9. De Souza S.S., Ayres F., Blak A.R. (2001) Simulation models of defects in MgAl<sub>2</sub>O<sub>4</sub>:Fe<sup>2+</sup>, Fe<sup>3+</sup> spinels. Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology, 156(1-4), 311-316. doi: 10.1080/10420150108216911
10. De Wijs G.A., Fang C.M., Kresse G. (2002) First-principles calculation of the phonon spectrum of MgAl<sub>2</sub>O<sub>4</sub> spinel. Phys. Rev. B., 65(9), 094305. doi: 10.1103/PhysRevB.65.094305
11. Dereń P.J., Malinowski M., Strȩk W. (1996) Site selection spectroscopy of Cr<sup>3+</sup> in MgAl<sub>2</sub>O<sub>4</sub> green spinel. J. Luminescence, 68(2-4), 91-103. doi: 10.1016/0022-2313(96)00020-8
12. Erukhimovitch V., Mordekoviz Y., Hayun S. (2015). Spectroscopic study of ordering in non-stoichiometric magnesium aluminate spinel. Amer. Mineral., 100(8-9), 1744-1751. doi: 10.2138/am-2015-5266
13. Fraas L.M., Moore J.E., Salzberg J.B. (1973) Raman characterization studies of synthetic and natural MgAl<sub>2</sub>O<sub>4</sub> crystals. J. Chem. Phys., 58(9), 3585-3592. doi: 10.1063/1.1679704
14. Gaft M., Reisfeld R., Panczer G. (2015) Modern luminescence spectroscopy of minerals and materials. Springer International Publishing, Switzerland, 606 p. ISSN 2366-1585. doi: 10.1007/978-3-319-24765-6
15. Garapon C., Brenier A., Moncorgé R. (1998) Site-selective optical spectroscopy of Cr<sup>3+</sup> doped non-stoichiometric green spinel MgO–2.6Al<sub>2</sub>O<sub>3</sub>. Optical Mater., 10(3),177-189. https://doi.org/10.1016/S0925-3467(98)00011-1
16. Garapon C., Manaa H., Moncorge R. (1991) Absorption and Fluorescence Properties of Cr<sup>3+</sup> Doped Nonstoichiometric Green Spinel. J. Chem. Phys., 95, 5501. doi: 10.1002/chin.199206009
17. Garnier V., Giuliani G., Ohnenstetter D. et al. (2008) Marble-hosted ruby deposits from Central and Southeast Asia: Towards a new genetic model. Ore Geol. Rev., 34, 169-191. doi: 10.1016/j.oregeorev.2008.03.003
18. Hinklin T.R., Laine R.M. (2008) Synthesis of Metastable Phases in the Magnesium Spinel-Alumina System. Chem. Mater., 20, 553. doi: 10.1021/cm702388g
19. Kharbish S. (2018) Raman spectroscopic features of Al-Fe<sup>3+</sup>-poor magnesiochromite and Fe<sup>2+</sup>-Fe<sup>3+</sup>-rich ferrian chromite solid solutions. Miner. Petrol., 112(2), 245-256. doi: 10.1007/s00710-017-0531-1
20. Kisin A.Y. (1991) Deposits of rubies in marbles (on the example of the Urals). Sverdlovsk, Ed. Ural Branch of the USSR Academy of Sciences, 130 p. (In Russ.)
21. Kisin A.Yu., Polenov Yu.A., Ogorodnikov V.N., Tomilina A.V. (2015) The first discovery of noble spinel at the Svetlinsky deposit of rock crystal (Southern Urals). Proceedings of the Ural State Mining University, 3(39), 21-27. (In Russ.)
22. Kisin A.Yu., Murzin V.V., Tomilina A.V., Pritchin M.E. (2016) Ruby-sapphire-spinel mineralization in the marbles of the Middle and Southern Urals: geology, mineralogy, genesis. Geol. Depos., 58(4), 385-402. (In Russ.)
23. Kisin A.Yu., Murzin V.V., Tomilina A.V., Smirnov V.N., Pritchin M.E. (2020) Ruby mineralization in the Murzinsky-Aduysky metamorphic complex (Middle Urals). Geol. Depos., 62(4), 369-388. (In Russ.) doi: 10.31857/S0016777020040048
24. Kolesnikova T.A. (1980) Noble spinel, clinohumite and manasseite from the Kuhilal deposit (Pamir). Precious and colored stones. Moscow, Nauka Publ., 181-199. (In Russ.)
25. Kroger F. (1974) The Chemistry of Imperfect Crystals, 2<sup>nd</sup> ed., Vol. 2, North-Holland, Amsterdam.
26. Lazzeri M., Thibaudeau P. (2006) Ab initio Raman spectrum of the normal and disordered MgAl<sub>2</sub>O<sub>4</sub> spinel. Phys. Rev. B., 74(14), 140301. doi: 10.1103/PhysRevB.74.140301
27. Lenaz D., Lughi V. (2013) Raman study of MgCr<sub>2</sub>O<sub>4</sub>–Fe<sup>2+</sup>Cr<sub>2</sub>O<sub>4</sub> and MgCr<sub>2</sub>O<sub>4</sub>–MgFesup>23+</sup>O<sub>4</sub> synthetic series: the effects of Fe<sup>2+</sup> and Fe<sup>3+</sup> on Raman shifts. Phys. Chem. Miner., 40(6), 491-498. doi: 10.1007/s00269-013-0586-4
28. Lenaz D., Lughi V. (2017) Raman spectroscopy and the inversion degree of natural Cr-bearing spinels. Amer. Miner., 102, 327-332. doi: 10.2138/am-2017-5814
29. Liu Y., Qi. L., Schwarz D., Zhou Z. (2022) Color mechanism and spectroscopic thermal variation of pink spinel reportedly from Kuh-I-Lal, Tajikistan. Gems Gemol., 58(3), 338-353. doi: 10.5741/GEMS.58.3.338
30. Litvinenko A.K. (2003) The genetic position of noble spinel in magnesian rocks of the Southwestern Pamirs. Zap. RMO, CXXXII(1), 76-82. (In Russ.)
31. Malézieux J.M., Barbillat J., Cervelle B., Coutures J.P., Couzi M., Piriou B. (1983) Étude de spinelles de synthèse de la série Mg (Crx Al<sub>2-x</sub>)O<sub>4</sub> et de chromites naturelles par microsonde Raman-Laser. Tschermaks mineralogische und petrographische Mitteilungen, 32(2-3), 171-185. doi: 10.1007/BF01081108
32. Malézieux J.M., Piriou B. (1988) Relation entre la composition chimique et le comportement vibrationnel de spinelles de synthèse et de chromites naturalles en microspectrométrie Raman. Bull. Minéralogue, 111, 649-669. doi: 10.2138/am-2017-5814
33. Malíčková I., Bačík P., Fridrichová J., Hanus R., Illášová L’., Štubňa J., Furka D., Furka S., Škoda R. (2021) Optical and Luminescence Spectroscopy of Varicolored Gem Spinel from Mogok, Myanmar and Lục Yên, Vietnam. Minerals, 11, 169. doi: 10.3390/min11020169
34. Malsy A., Karampelas S., Schwarz D., Klemm L., Armbruster T., Tuan D.A. (2012) Orangey-red to orangey pink gem spinels from a new deposit at Lang Chap (Tan Huong-Truc Lau), Vietnam. J. Gemmology, 33, 19-27. doi: 10.15506/JoG.2012.33.1.19
35. Mikenda W., Preisinger A. (1981) N-lines in the luminescence spectra of Cr<sup>3+</sup>-doped spinels. II-Origins of N-lines. J. Luminescopy, 26(1-2), 67-83. doi: 10.1016/0022-2313(81)90170-8
36. Muromtseva A.V., Ponomareva N.I., Bocharov V.N., Zhilicheva O.M. (2019) Coalescence of corundum and spinel from the Turain-Taung deposit (Myanmar). Zap. RMO, (2), 100-114. (In Russ.) doi: 10.30695/zrmo/2019.1482.07
37. Murphy S.T., Gilbert C.A., Smith R., Mitchell T.E., Grimes R.W. (2010) Non-stoichiometry in MgAl<sub>2</sub>O<sub>4</sub> spinel. Philosoph. Magaz., 90(10), 1297-1305. doi: 10.1080/14786430903341402
38. Nell J., Wood B.J. (1989) Thermodynamic properties in a multicomponent solid solution involving cation disorder; Fe<sub>т3</sub>O<sub>4</sub>-MgFe<sub>2</sub>O4-FeAl<sub>2</sub>O<sub>4</sub>-MgAl<sub>2</sub>O<sub>4</sub> spinels. Amer. Mineral., 74(9-10), 1000-1015.
39. O’Horo M.P., Frisillo A.L., White W.B. (1973) Lattice vibrations of MgAl<sub>2</sub>O<sub>4</sub> spinel. J. Phys. Chem. Sol., 34(1), 23-28. doi: 10.1016/0022-3697(73)90058-9
40. O’Neil H.S.C., Navrotsky A. (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. Amer. Mineral., 69(7-8), 733-753.
41. Pluthametwisute T., Wanthanachaisaeng B., Saiyasombat C., Sutthirat C. (2022) Minor Elements and Color Causing Role in Spinel: Multi-Analytical Approaches. Minerals, 12, 928. doi: 10.3390/min12080928
42. Schmetzer K., Haxel C., Amthauer G. (1989) Colour of natu ral spinels, gahnospinels and gahnites. Neues Jahrbuch für Mineralogie. Abhandlungen, 2, 159-180.
43. Shchapova Yu.V., Votyakov S.L., Kisin A.Yu. (2022) A method for assessing the gemological value of magnesium-aluminum spinel. Patent for invention No. 2779143 dated 02. 09. (priority 23. 11. 2021). Copyright holder of IGG Ural Branch of the Russian Academy of Sciences. (In Russ.)
44. Sickafus K.E., Yu N., Nastasi M. (1996) Radiation resistance of the oxide spinel: The role of stoichiometry on damage response. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 116(1-4), 85-91. doi: 10.1016/0168-583x(96)00015-8
45. Slotznick S.P., Shim S.H. (2008) In situ Raman spectroscopy measurements of MgAl<sub>2</sub>O<sub>4</sub> spinel up to 1400 C. Amer. Mineral., 93(2-3), 470-476. doi: 10.2138/am.2008.2687
46. Smith C. (2012) Spinel and its Treatments: A Current Status Report. Gemology, 50-54.
47. Wang C., Shen A.H., Liu Y. (2020) Characterization of order-disorder transition in MgAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup> spinel using photoluminescence. J. Luminesc., 117552. doi: 10.1016/j.jlumin.2020.117552
48. White W.B., DeAngelis B.A. (1967) Interpretation of the vibrational spectra of spinels. Spectrochim. Acta Part A: Molec. Spectrosc., 23(4), 985-995. doi: 10.1016/0584-8539(67)80023-0
49. Widmer R., Malsy A.K., Armbruster T. (2015) Effects of heat treatment on red gemstone spinel: Single-crystal X-ray, Raman, and photoluminescence study. Phys. Chem. Miner., 42(4), 251-260. doi: 10.1007/s00269-014-0716-7
50. Wood D.L., Imbusch G.F., Macfarlane R.M., Kisliuk P., Larkin D.M. (1968) Optical spectrum of Cr<sup>3+</sup> ions in spinels. J. Chem. Phys., 48(11), 5255-5263. doi: 10.1063/1.1668202
51. Wu J., Sun X., Ma H., Ning P., Tang N., Ding T., Li H., Zhang T., Ma Y. (2023) Purple-Violet Gem Spinel from Tanzania and Myanmar: Inclusion, Spectroscopy, Chemistry, and Color. Minerals, 13, 226. doi: 10.3390/min13020226
52. Zatsepin A.F., Kiryakov A.N., Zatsepin D.A., Shchapova Y., Gavrilov N. (2020) Structural and electron-optical pro perties of transparent nanocrystalline MgAl<sub>2</sub>O<sub>4</sub> spinel implanted with copper ions. J. Alloys Compounds, 154993. doi: 10.1016/j.jallcom.2020.154993
Review
For citations:
Shchapova Yu.V., Kissin A.Yu., Chebykin N.S., Votyakov S.L. Chemical composition, structural features and luminescent properties of Cr-bearing spinel from marbles of the Eastern Slope of the Urals. LITHOSPHERE (Russia). 2025;25(2):263-280. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-263-280. EDN: VTCQAI