Determination of the internal structural heterogeneity of natural diamond: Methodological aspects of using confocal Raman spectroscopy with polarization analysis
https://doi.org/10.24930/1681-9004-2024-24-2-347-363
Abstract
Aim. To describe a technique for studying the internal structural heterogeneity of natural diamond crystals, based on confocal Raman spectroscopy with polarization analysis, including angular resolution, at high spectral (0.5–0.6 cm–1) and spatial (1 μm) resolution. Results. The parameters of the F2g vibrational mode in diamond (position, width, intensity, shape, including the Gaussian and Lorentzian contributions to the broadening) are determined by the superposition influence of a number of factors, including the type and content of structural stresses, deformations, various types of defects, as well as orientation of crystallographic axes of the crystal relative to the directions of incident and scattered rays and the directions of their electric polarization vectors. The proposed analytical technique includes: (1) analysis of the crystallographic orientation of the sample in the spectrometer coordinate system and possible misorientations of its fragments with an error of ≈8–15°; (2) visualization of the distribution of structural stresses, deformations, twins, impurity defects and their associates based on sample surface mapping by spectral parameters of the F2g vibration mode; (3) obtaining statistical characteristics of the internal structural heterogeneity of the samples based on diagrams of spectral parameter frequency with a statistically significant number (≈103): unimodality (uni-, bimodal distributions) and distribution dispersion (from ≈0.1 to ≈0.6 cm–1 for width and from ≈0.04 to ≈0.6 cm–1 for line position). The procedure was tested using two synthetic CVD diamond single crystals doped with nitrogen and boron. The possibility of typification of natural samples by statistical characteristics of internal heterogeneity is considered using the example of samples from kimberlite pipes of Yakutia and placers of the Western Cis-Urals. Conclusions. A method for determining the internal structural heterogeneity of natural diamond crystals based on confocal Raman spectroscopy with polarization analysis is proposed. The possibility of using statistical characteristics of heterogeneity as a typomorphic feature of the original diamond source is demonstrated. The proposed diagrams are promising for sample comparison and typification.
About the Authors
L. I. BogdanovaRussian Federation
Louisa I. Bogdanova
15 Academician Vonsovsky st., Ekaterinburg 620110
Yu. V. Shchapova
Russian Federation
Yuliya V. Shchapova
15 Academician Vonsovsky st., Ekaterinburg 620110
L. Y. Sushanek
Russian Federation
Lev Y. Sushanek
15 Academician Vonsovsky st., Ekaterinburg 620110
E. A. Vasiliev
Russian Federation
Evgenii A. Vasiliev
2 21st Line, Vasilyevsky Island, Saint Petersburg 199106
S. L. Votyakov
Russian Federation
Sergey L. Votyakov
15 Academician Vonsovsky st., Ekaterinburg 620110
References
1. Afanasiev V., Ugapeva S., Babich Y., Sonin V., Logvinova A., Yelisseyev A., Goryainov S., Agashev A., Ivanova O. (2022) Growth. Story of One Diamond: A Window to the Lithospheric Mantle. Minerals, 12, 1048. https://doi.org/10.3390/min12081048
2. Bensalah H., Stenger I., Sakr G., Barjon J., Bachelet R., Tallaire A., Achard J., Vaissiere N., Lee K.H., Saada S., Arnault J.C. (2016) Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diamond Relat. Mater., 66, 188-195. https://doi.org/10.1016/j.diamond.2016.04.006
3. Blank V.D., Denisov V.N., Kirichenko A.N., Kuznetsov M.S., Mavrin B.N., Nosukhin S.A., Terentiev S.A. (2008) Raman scattering by defect-induced excitations in boron-doped diamond single crystals. Diamond Relat. Mater., 17, 1840-1843. https://doi.org/10.1016/j.diamond.2008.07.004
4. Bogdanova L.I., Shchapova Yu.V. (2023) Certificate of state registration of the program No. 2023668438 dated August 28, 2023, copyright holder A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS. (In Russ.)
5. Bokii G.B., Bezrukov G.N., Klyuev Yu.A., Naletov A.M., Nepsha V.I. (1986) Natural and synthetic diamonds. Moscow, Nauka Publ., 224 p. (In Russ.)
6. Bulatov V.A., Shchapova Yu.V., Zamyatin D.A., Sushanek L.Ya., Kamenetskikh A.S., Votyakov S.L. (2023) Analysis of the chemical composition and structure of films of micron-thick complex oxides by electron probe microanalysis and confocal Raman spectroscopy (using the example of MgAl2O4 film on SiO2). Zhurnal Analit. Khimii, 78(12), 1106-1118. (In Russ.) https://doi.org/10.31857/S0044450223120034
7. Cerdeira F., Buchenauer C.J., Pollak F. H., Cardona M. (1972) Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors. Phys. Rev. B, 5, 580-593. https://doi.org/10.1103/PhysRevB.5.580
8. Crisci A., Baillet F., Mermoux M., Bogdan G., Nesládek M., Haenen K. (2011) Residual strain around grown-in defects in CVD diamond single crystals: A 2D and 3D Raman imaging study. Phys. Status Solidi (А), 208(9), 2038-2044. https://doi.org/10.1002/pssa.201100039
9. Christian J.W., Mahajan S. (1995) Deformation twinning. Progr. Mater. Sci., 39, 1-157. https://doi.org/10.1016/0079-6425(94)00007-7
10. Di Liscia E.J., Álvarez F., Burgos E., Halac E.B., Huck H., Reinoso M. (2013) Stress Analysis on Single-Crystal Diamonds by Raman Spectroscopy 3D Mapping. Mater. Sci. Appl., 4, 191-197. https://doi.org/10.4236/msa.2013.43023
11. Feng Z.B., Chayahara A., Mokuno Y., Yamada H., Shikata S. (2010) Raman spectra of a cross section of a large single crystal diamond synthesized by using microwave plasma CVD. Diamond Relat. Mater., 19, 171-173. https://doi.org/10.1016/j.diamond.2009.10.002
12. Green B.L., Collins A.T., Breeding C.M. (2022) Diamond Spectroscopy, Defect Centers, Color, and Treatments. Rev. Miner. Geochem., 88, 637-688. http://dx.doi.org/10.2138/rmg.2022.88.12
13. Grimsditch M.H., Anastassakis E., Cardona M. (1978) Effect of uniaxial stress on the zone-center optical phonon of diamond. Phys. Rev. B, 18, 901-904. https://doi.org/10.1103/PhysRevB.18.901
14. Hanzawa H., Umemura N., Nisida Y., Kanda H., Okada M., Kobayashi M. (1996) Disorder effects of nitrogen impurities, irradiation-induced defects, and 13 C isotope composition on the Raman spectrum in synthetic Ib diamond. Phys. Rev. B, 54, 3793-3799. https://doi.org/10.1103/physrevb.54.3793.
15. Howell D., Fisнer D., Piazolo S., Griffin W.L., Sibley S.J. (2015) Pink color in Type I diamonds: Is deformation twinning the cause? Amer. Miner., 100, 1518-1527. https://doi.org/10.2138/am-2015-5044
16. Ichikawa K., Shimaoka T., Kato Y., Koizumi S., Teraji T. (2020) Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging, J. Appl. Phys. 128, 155302. https://doi.org/10.1063/5.0021076
17. Izraeli E.S., Harris J.W., Navon O. (1999) Raman barometry of diamond formation. Earth Planet. Sci. Lett., 173, 351-360. https://doi.org/10.1016/S0012-821X(99)00235-6
18. Jain V., Biesinger M.C., Linford M.R. (2018) The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) Functions in the Context of Peak Fitting X-ray Photo-electron Spectroscopy (XPS) Narrow Scans. Appl. Surf. Sci., 34. https://doi.org/10.1016/j.apsusc.2018.03.190
19. Jasbeer H., Williams R.J., Kitzler O., McKay A., Sarang S., Lin J., Mildren R.P. (2016) Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance. J. Optic. Soc. Amer. B, 33(3), B56-B64. https://doi.org/10.1364/JOSAB.33.000B56
20. Kagi H., Odake S., Fukura S., Zedgenizov D.A. (2009) Raman spectroscopic estimation of depth of diamond origin: technical developments and the application. Russ. Geol. Geophys., 50, 1183-1187. https://doi.org/10.1016/j.rgg.2009.11.016
21. Lang A.R., Moore M., Makepeace A.P.W., Wierzchowski W., Welbourn C.M. (1991) On the dilatation of synthetic type Ib diamond by substitutional nitrogen impurity. Philos. Trans. R. Soc. Lond. A, 337, 497-520. https://doi.org/10.1098/rsta.1991.0135
22. Loudon R. (2001) The Raman Effect in Crystals. Adv. Phys., 50, 813-864.
23. Major G., Fernandez V., Fairley N., Linford M. (2022) A detailed view of the Gaussian–Lorentzian sum and product functions and their comparison with the Voigt function. Surf. Interf. Anal., 54(3), 262-269. https://doi.org/10.1002/sia.7050
24. Minerals concentrators of d- and f-elements: local spectroscopic and LA-ISP-MS studies of composition, structure and properties, geochronological applications. (2020) (Yu.V. Shchapova, S.L. Votyakov, D.A. Zamyatin, M.V. Chervyakovskaya, E.A. Pankrushina. Ed. S.L. Votyakov). Novosibirsk, Publishing House of the SB RAS, 424 p. (In Russ.)
25. Mortet V., Gregora I., Taylor A., Lambert N., Ashcheulov P., Gedeonova Z., Hubik P. (2020) New perspectives for heavily boron-doped diamond Raman spectrum analysis. Carbon, 168, 319-327. https://doi.org/10.1016/j.carbon.2020.06.075
26. Mossbrucker J., Grotjohn T.A. (1996) Determination of local crystal orientation of diamond using polarized Raman spectra. Diamond Relat. Mater., 5, 1333-1343. https://doi.org/10.1016/0925-9635(96)00547-X
27. Nasdala L., Brenker F.E., Glinnemann J., Hofmeister W., Gasparik T., Harris J.W., Tachel T., Reese I. (2003) Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds. Eur. J. Mineral., 15, 931-935. https://doi.org/10.1127/0935-1221/2003/0015-0931
28. Nasdala L., Hofmeister W., Harris J.W., Glinnemann J. (2005) Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps. Amer. Miner., 90, 745-748. https://doi.org/10.2138/am.2005.1690
29. Nugent K.W., Prawer S. (1998) Confocal Raman strain mapping of isolated single CVD diamond crystals. Diamond Relat. Mater., 7(2-5), 215-221. https://doi.org/10.1016/s0925-9635(97)00212-4
30. Prawer S., Nemanich R.J. (2004) Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. Lond. A, 362, 2537-2565. https://doi.org/10.1098/rsta.2004.1451
31. Ramabadran U., Roughani B. (2018) Intensity analysis of polarized Raman spectra for off axis single crystal silicon. Mater. Sci. Eng.: B. 230, 31-42. https://doi.org/10.1016/j.mseb.2017.12.040
32. Srimongkon K., Ohmagari S., Kato Y., Amornkitbamrung V., Shikata S. (2016) Boron inhomogeneity of HPHT-grown single-crystal diamond substrates: Confocal micro-Raman mapping investigations. Diamond Relat. Mater., 63, 21-25. https://doi.org/10.1016/j.diamond.2015.09.014
33. Steele J.A., Puech P., Lewis R.A. (2016) Polarized Raman backscattering selection rules for (hhl)-oriented diamond- and zincblende-type crystals. J. Appl. Phys., 120(5), 055701. https://doi.org/10.1063/1.4959824
34. Stuart S.-A., Prawer S., Weiser P.S. (1993) Variation of the raman diamond line shape with crystallographic orientation of isolated chemical-vapour-deposited diamond crystals. Diamond Relat. Mater., 2(5-7), 753-757. https://doi.org/10.1016/0925-9635(93)90217-p
35. Surovtsev N.V., Kupriyanov I.N. (2015) Temperature dependence of the Raman line width in diamond: Revisited. J. Raman Spectrosc., 46, 171-176. https://doi.org/10.1002/jrs.4604
36. Surovtsev N.V., Kupriyanov I.N. (2017) Effect of Nitrogen Impurities on the Raman Line Width in Diamond. Revisited. Cryst., 7, 239. https://doi.org/10.3390/cryst7080239
37. Surovtsev N.V., Kupriyanov I.N., Malinovsky V.K., Gusev V.A., Pal’yanov Y.N. (1999) Effect of nitrogen impurities on the Raman line width in diamonds. J. Phys. Con-dens. Matter., 11, 4767-4774. https://doi.org/10.3390/cryst7080239
38. Takeuchi M., Yasuoka M., Ishii M., Ohtani N., Shikata S. (2023) Analysis of diamond dislocations by Raman polarization measurement. Diamond Relat. Mater., 140, 110510. https://doi.org/10.1016/j.diamond.2023.110510
39. Tesar K., Gregora I., Beresova P., Vanek P., Оndrejkovic P., Hlinka J. (2019) Raman scattering yields cubic crystal grain orientation. Sci. Rep., 9, 9385. https://doi.org/10.1038/s41598-019-45782-z
40. Tomlinson E.L., Howell D., Jones A.P., Frost D.J. (2011) Characteristics of HPHT diamond grown at sub-lithosphere conditions (10-20 GPa). Diamond Relat. Mater., 20, 11-17. https://doi.org/10.1016/j.diamond.2010.10.002
41. Váczi T. (2014) A new, simple approximation for the deconvolution of instrumental broadening in spectroscopic band profiles. Appl. Spectrosc., 68(11), 1274-8. https://doi.org/10.1366/13-07275
42. Vasilev E.A., Klepikov I.V., Lukianova L.I. (2019) Comparison of Diamonds from the Rassolninskaya Depression and Modern Alluvial Placers of the Krasnovishersky District (Ural Region). Geol. Ore Depos., 61, 598-605. https://doi.org/10.1134/S1075701519070134
43. Vasilev E.A., Kudriavtsev A.A., Klepikov I.V., Antonov A.V. (2023) Diversity of the Structure of Diamond Crystals and Aggregates: Electron Backscatter Diffraction Data. Geol. Ore Depos., 65, 743-753. https://doi.org/10.1134/S1075701523070140
44. Vhareta M., Erasmus R.M., Comins J.D. (2020) Micro-Raman and X-ray diffraction stress analysis of residual stresses in fatigue loaded leached polycrystalline diamond discs. Int. J. Refract. Metals Hard Mater., 88, 105176. https://doi.org/10.1016/j.ijrmhm.2019.105176
45. Von Kaenel Y., Stiegler J., Michler J., Blank E. (1997) Stress distribution in heteroepitaxial chemical vapor deposited diamond films. J. Appl. Phys., 81(4), 1726-1736. https://doi.org/10.1063/1.364006
46. Xu B., Mao N., Zhao Y., Tong L., Zhang J. (2021) Polarized Raman Spectroscopy for Determining Crystallographic Orientation of Low-Dimensional Materials. J. Phys. Chem. Lett., 12, 7442-7452. https://doi.org/10.1021/acs.jpclett.1c01889
47. Zhong X., Loges A., Roddatis V., John T. (2021) Measurement of crystallographic orientation of quartz crystal using Raman spectroscopy: application to entrapped inclusions. Contrib. Mineral. Petrol. https://doi.org/10.1007/s00410-021-01845-x
Review
For citations:
Bogdanova L.I., Shchapova Yu.V., Sushanek L.Y., Vasiliev E.A., Votyakov S.L. Determination of the internal structural heterogeneity of natural diamond: Methodological aspects of using confocal Raman spectroscopy with polarization analysis. LITHOSPHERE (Russia). 2024;24(2):347-363. (In Russ.) https://doi.org/10.24930/1681-9004-2024-24-2-347-363