Preview

LITHOSPHERE (Russia)

Advanced search

Oxoborates of the ludwigite group: Natural and mineral-like compounds as prospective materials

https://doi.org/10.24930/1681-9004-2024-24-2-226-239

Abstract

Research subject. Natural oxoborates of the ludwigite group, including azoproite, ludwigite, and vonsenite. Their empirical formulas based on five oxygen atoms have the following form: azoproite (Mg1.81Fe2+0.19)∑2.00(Fe3+0.36Ti0.26Mg0.26Al0.12)∑1.00 O2(BO3), ludwigite (Mg1.69Fe2+0.30Mn2+0.01)Σ2.00(Fe3+0.90Al0.07Mg0.02Sn0.01)Σ1.00O2(BO3) and vonsenite (Fe2+1.86Mg0.13)∑1.99 (Fe3+0.92Mn2+0.05Sn4+0.02Al0.02)∑1.01O2(BO3). Aim. To establish the relationship between the composition, crystal structure, and thermal behavior (293–1373 K) of the minerals. Materials and methods. Ludwigite was collected at the Iten’yurginskoe tin skarn deposit; vonsenite was collected at the Titovskoe magnesium-skarn boron deposit; azoproite was collected at magnesian skarns of the Tazheran alkaline massif. The methods of single crystal X-ray diffraction, energy dispersive X-ray spectroscopy, high-temperature X-ray diffraction, Mössbauer spectroscopy, and thermal analysis were used. Results. Low-charge cations (Fe2+, Fe2.5+, Mg2+) tend to occupy the M(1)–M(3) sites, and high-charge cations (Fe3+, Al3+, Ti4+, Sn4+) generally occupy the M(4) site. Azoproite is characterized by the highest melting temperature Tm > 1650 K. Due to the low Fe2+ content, azoproite does not undergo solid-phase decomposition across the investigated temperature range. The melting point of ludwigite exceeds 1582 K, which is due to the high Mg content; as a result of the Fe2+ → Fe3+ oxidation, it gradually decomposes with the formation of hematite, warwickite, and magnetite. The temperatures of oxidation and solid-phase decomposition in the Fe2+-rich vonsenite are approximately 100 K lower than those in ludwigite. The melting point of vonsenite is 1571 K. All the minerals are characterized by a weak degree of thermal expansion anisotropy. The main contribution to the thermal expansion anisotropy is due to the preferred orientation of the [BO3]3– triangles. Conclusions. The thermal properties of the oxoborates depend on their chemical composition. It was established that Tm increases with an increase in the Mg and Ti4+ content, and decreases with an increase in the Fe2+ content. The Fe2+ → Fe3+ oxidation is observed when the FeO component in the minerals exceeds 10 wt %, which leads to the solid-phase decomposition starting at temperatures of about 500–600 K. The values of the 293KαV volume thermal expansion of ludwigite and azoproite are comparable, while the largest values were observed for vonsenite. This is associated with the largest average bond lengths, primarily those of <Fe2+–O>6.

About the Authors

Ya. P. Biryukov
I.V. Grebenschikov Institute of Silicate Chemistry of the Russian Academy of Sciences (ISC RAS)
Russian Federation

Yaroslav P. Biryukov

2 Makarova emb., Saint Petersburg 199034



A. L. Zinnatullin
Kazan Federal University, Institute of Physics
Russian Federation

Almaz L. Zinnatullin

18 Kremlyovskaya st., Kazan 420008



R. S. Bubnova
I.V. Grebenschikov Institute of Silicate Chemistry of the Russian Academy of Sciences (ISC RAS)
Russian Federation

Rimma S. Bubnova

2 Makarova emb., Saint Petersburg 199034



F. G. Vagizov
Kazan Federal University, Institute of Physics
Russian Federation

Farit G. Vagizov

18 Kremlyovskaya st., Kazan 420008



A. P. Shablinskii
I.V. Grebenschikov Institute of Silicate Chemistry of the Russian Academy of Sciences (ISC RAS)
Russian Federation

Andrey P. Shablinskii

2 Makarova emb., Saint Petersburg 199034



S. K. Filatov
Saint Petersburg State University, Institute of Earth Sciences
Russian Federation

Stanislav K. Filatov

7/9 Universitetskaya emb., Saint Petersburg 199034



I. V. Pekov
Moscow State University
Russian Federation

Igor V. Pekov

Faculty of Geology

1 Leninskie Gory, Moscow 119991



References

1. Aleksandrov S.M. (1976) Magnesium-iron borates, its natural modifications and analogues. Trudy Mineralogicheskogo Мuzeya im. A.E. Fersmana, 25, 3-26. (In Russ.)

2. Bachechi F., Federico M., Fornaseri M. (1966) La ludwigite ei minerali che l’accompagnano nelle geodi delle “pozzolane nere” di Corcolle (Tivoli, Colli Albani). Periodico di Mineralogia, 35, 975-1022. https://doi.org/10.1016/j.jmmm.2014.04.031

3. Bezmaternykh L.N., Kolesnikova E.M., Eremin E.V., Sofronova S.N., Volkov N.V., Molokeev M.S. (2014) Magnetization pole reversal of ferrimagnetic ludwigites Mn3–x NixBO5. J. Magn. Magn. Mat., 364, 55-59. https://doi. org/10.1016/j.jmmm.2014.04.031

4. Bezmaternykh L., Moshkina E., Eremin E., Molokeev M., Volkov N., Seryotkin Y. (2015) Spin-Lattice Coupling and Peculiarities of Magnetic Behavior of Ferrimagnetic Ludwigites Mn0.52+M1.52+Mn3+BO5(M = Cu, Ni). Solid State Phenomena, 233-234, 133-136. https://doi.org/10.4028/www.scientific.net/SSP.233-234.133

5. Biryukov Y.P., Bubnova R.S., Filatov S.K. (2023) Anisotropy of Thermal Expansion of Oxoborate Warwickite. Glass Physics and Chemistry, 49(5), 514-519 (translated from Phizika i chimiya stekla, 49(5), 538-545). doi. org/10.1134/s1087659623600503

6. Biryukov Y.P., Zinnatullin A.L., Bubnova R.S., VagizovF.G., Shablinskii A.P, Filatov S.K., Shilovskikh V.V., Pekov I.V. (2020) Investigation of thermal behavior of mixed-valent iron borates vonsenite and hulsite containing [OM4]n+ and [OM5]n+ oxocentred polyhedra by in situ high-temperature Mossbauer spectroscopy, X-ray diffraction and thermal analysis. Acta Cryst. Sect. B: Struct. Sci., Cryst. Engin. Mater., B76(4), 543-553. https://doi.org/10.1107/S2052520620006538

7. Biryukov Y.P., Zinnatullin A.L., Cherosov M.A., Shablinskii A.P., Yusupov R.V., Bubnova R.S., Vagizov F.G., Filatov S.K., Avdontceva M.S., Pekov I.V. (2021) Low-temperature investigation of natural iron-rich oxoborates vonsenite and hulsite: thermal deformations of crystal structure, strong negative thermal expansion and cascades of magnetic transitions. Acta Cryst. Sect. B: Struct. Sci., Cryst. Engin. Mater., B77, 1021-1034. https://doi.org/10.1107/S2052520621010866

8. Biryukov Y.P., Zinnatullin A.L., Levashova I.O., Shablinskii A.P., Bubnova R.S., Vagizov F.G., Ugolkov V.L., Filatov S.K., Pekov I.V. (2023) Crystal structure refinement, low- and high-temperature X-ray diffraction and Mössbauer spectroscopy study of the oxoborate ludwigite from the Itenʼyurginskoe deposit. Acta Cryst. Sect. B: Struct. Sci., Cryst. Engin. Mater., B79, 368-379. https://doi.org/10.1107/S2052520623006455

9. Biryukov Y.P., Zinnatullin A.L., Levashova I.O., Shablinskii A.P., Cherosov M.A., Bubnova R.S., Vagizov F.G., Krzhizhanovskaya M.G., Filatov S.K., Shilovskikh V.V., Pekov I.V. (2022) X-ray diffraction and Mossbauer spectroscopy study of oxoborate azoproite (Mg,Fe2+)2(Fe3+,Ti,Mg,Al)O2(BO3): an in situ temperature-dependent investigation (5 ≤ T ≤ 1650 K). Acta Cryst. Sect. B: Struct. Sci., Cryst. Engin. Mater., B78, 809-816. https://doi.org/10.1107/S2052520622009349

10. Bloise A., Barrese E., Apollaro C., Miriello D. (2010) Synthesis of ludwigite along the Mg2FeBO5-Mg2Al-BO5 join. Neues Jahrbuch für Mineralogie – Abhandlungen, 187(2), 217-223. https://doi.org/10.1127/0077-7757/2010/0175

11. Bluhm K., Muller-Buschbauln H. (1989) Eine neue Verbindung vom M2TiB2O10-Typ mit geordneter Metallverteilung: NisSnB2O10. Monatshefte fur Chemie, 120, 85-89.

12. Bubnova R.S., Filatov S.K. (2013) High-Temperature borate crystal chemistry. Z. Kristallogr. Cryst. Mater., 228, 395-428. https://doi.org/10.1524/zkri.2013.1646

13. Bulakh M.O., Pekov I.V., Koshlyakova N.N., Sidorov E.G. (2021) Ludwigite and Yuanfuliite from Fumarolic Exhalations of the Tolbachik Volcano (Kamchatka, Russia). Zapiski Ros. Mineralog. Obshchestva, 150(6), 67-87. (In Russ.) https://doi.org/10.31857/S0869605521060022

14. Burns P.C., Cooper M.A., Hawthorne F.C. (1994) Jahn-Teller distorted Mn3+O6 octahedra in fredrikssonite, the fourth polymorph of Mg2Mn3+(BO3)O2. Canad. Miner., 32(2), 397-403.

15. Chaplygin I.V., Yudovskaya M.A., Pekov I.V., Zubkova N.V., Britvin S.N., Vigasina M.F., Pushcharovsky D.Y., Belakovskiy D.I., Griboedova I.G., Kononkova N.N., Rassulov V.A. (2016) Marinaite IMA 2016-021. CNMNC Newslett. No. 32, Miner. Magaz., 80, 915-922.

16. Damay F., Sottmann J., Fauth F., Suard E., Maignan A., Martin C. (2021) High temperature spin-driven multiferroicity in ludwigite chromocuprate Cu2CrBO5. Appl. Phys. Lett., 118, 192903. https: /doi.org/10.1063/5.0049174

17. Damay F., Sottmann J., Lainé F., Chaix L., Poienar M., Beran P., Elkaim E., Fauth F., Nataf L., Guesdon A., Maignan A., Martin C. (2020) Magnetic phase diagram for Fe3−xMnxBO5. Phys. Rev. B, 101, 094418. https://doi.org/10.1103/PhysRevB.101.094418

18. De Waal S.A., Viljoen E.A., Calk L.C. (1974) Nickel minerals from Barberton, South Africa: VII. Bonaccordite, the nickel analogue of ludwigite. Transact. Geol. Soc. South Africa, 77(3), 373-375.

19. Dunn P.J., Peacor D.R., Simmons W.B., Newbury D. (1983) Fredrikssonite, a new member of the pinakiolite group, from Långban, Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 105(4), 335-340. https://doi.org/10.1080/11035898309454571

20. Eakle A.S. (1920) Vonsenite. A preliminary note on a new mineral. Amer. Miner.: J. Earth Planet. Mater., 5(8), 141-143.

21. Fernandes J.C., Guimarães R.B., Continentino M.A., Borges H.A., Sulpice A., Tholence J-L., Siqueira J.L., Zawislak L.I., da Cunha J.B.M., dos Santos C.A. (1998) Magnetic interactions in the ludwigite Ni2FeO2BO3. Phys. Rev. B, 58(1), 287-292. https://doi.org/10.1103/PhysRevB.58.287

22. Freitas D.C., Guimarães R.B., Sanchez D.R., Fernandes J.C., Continentino M.A., Ellena J., Kitada A., Kageyama H., Matsuo A., Kindo K., Eslava G.G., Ghivelder L. (2010) Structural and magnetic properties of the oxyborate Co5Ti(O2BO3)2. Phys. Rev. B, 81, 024432. https://doi.org/10.1103/PhysRevB.81.024432

23. Grew E.S., Anovitz L.M. (1996) Mineralogy, petrology and geochemistry of boron. Rev. Miner., 33, 862.

24. Heringer M.A.V., Freitas D.C., Mariano D.L., Baggio-Saitovitch E., Continentino M.A., Sánchez D.R. (2019) Structural and magnetic properties of the Ni5Ti(O2BO3)2 ludwigite. Phys. Rev. Mater., 3, 064412. https://doi.org/10.1103/PhysRevMaterials.3.094402

25. Heringer M.A.V., Mariano D.L., Freitas D.C., Baggio-Saitovitch E., Continentino M.A., Sanchez D.R. (2020) Spin-glass behavior in Co3Mn3(O2BO3)2 ludwigite with weak disorder. Phys. Rev. Mater., 4, 094402. https://doi.org/10.1103/PhysRevMaterials.4.064412

26. Ivanova N.B., Kazak N.V., Knyazev Yu.V., Velikanov D.A., Bezmaternykh L.N., Ovchinnikov S.G., Vasil’ev A.D., Platunov M.S., Bartolomée J., Patrina G.S. (2011) Crystal Structure and Magnetic Anisotropy of Ludwigite Co2FeO2BO3. J. Exp. Theor. Phys., 113(6), 1015-1024. https://doi.org/10.1134/S1063776111140172

27. Ivanova N.B., Platunov M.S., Knyazev Yu.V., Kazak N.V., Bezmaternykh L.N., Eremin E.V., Vasiliev A.D. (2012) Spin-glass magnetic ordering in CoMgGaO2BO3 ludwigite. Low Temp. Phys., 38, 172. https://doi.org/10.1063/1.3679627

28. Ivanova N.B., Vasil’ev A.D., Velikanov D.A., Kazak N.V., Ovchinnikov S.G., Petrakovski G.A., Rudenko V.V. (2007) Magnetic and Electrical Properties of Cobalt Oxyborate Co3BO5. Phys. Solid State, 49(4), 651-653. https://doi.org/10.1134/S1063783407040087

29. Konev A.A., Lebedeva V.S., Kashaev A.A., Ushchapovskaya Z.F. (1970) Azoproite – a new mineral of the ludwigite group. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 99(2), 225-231. (In Russ.)

30. Krivovichev S.V., Filatov S.K., Semenova T.F. (1998) Types of cationic complexes based on oxocentred tetrahedra [OM4] in the crystal structures of inorganic compounds. Russ. Chem. Rev., 67(2), 137-155 (translated from Usp. chimii, 67(2), 155-174), doi.org/10.1070/RC1998v067n02ABEH000287

31. Kumar J., Deepak J.M., Bhattacharyya A., Nair S. (2020) Investigations of the heterometallic ludwigite Ni2AlBO5. J. Phys.: Condens. Matter., 32, 065601.

32. Kumar J., Panja S.N., John D., Bhattacharyya A., Nigam A.K., Nair S. (2017) Reentrant superspin glass state and magnetization steps in the oxyborate Co2AlBO5. Phys. Rev. B, 95, 144409.

33. Li H.K., Wang L., Cai G.M., Fan J.J., Fan X., Jin Z.P. (2013) Synthesis and crystal structure of a novel ludwigite borate: Mg2InBO5. J. Alloy. Comp., 575, 104-108.

34. Mariano D.L., Heringer M.A.V., Freitas D.C., Andrade V.M., Saitovitch E.B., Continentino M.A., Ghivelder L., Passamani E.C., Sánchez D.R. (2021) Metamagnetic transitions induced by doping with non-magnetic 4+ ions in ludwigites Co5A(O2BO3)2 (A = Zr and Hf). J. Alloy. Comp., 890, 161717.

35. Martin C., Maignan A., Guesdon A., Lainé F., Lebedev O.I. (2017) Topochemical Approach for Transition-Metal Exchange Assisted by Copper Extrusion: from Cu2Fe-BO5 to Fe3BO5. Inorg. Chem., 56(5), 2375-2378.

36. Medrano C.P.C., Freitas D.C., Passamani E.C., Pinheiro C.B., Baggio-Saitovitch E., Continentino M.A., Sanchez D.R. (2017) Field-induced metamagnetic transitions and two-dimensional excitations in ludwigite Co4.76Al1.24(O2BO3)2. Phys. Rev. B, 95, 214419.

37. Medrano C.P.C., Freitas D.C., Sanchez D.R., Pinheiro C.B., Eslava G.G., Ghivelder L., Continentino M.A. (2015) Nonmagnetic ions enhance magnetic order in the ludwigite Co5Sn(O2BO3)2. Phys. Rev. B, 91, 054402.

38. Mir M., Janczak J., Mascarenhas Y.P. (2006) X-ray diffraction single-crystal structure characterization of iron ludwigite from room temperature to 15 K. J. Appl. Cryst., 39, 42-45.

39. Moshkina E.M., Gavrilova T.P., Gilmutdinov I.F., Kiiamov A.G., Eremina R.M. (2020) Flux Crystal Growth of Cu2GaBO5 and Cu2AlBO5. J. Cryst. Growth, 545, 125723.

40. Moshkina E., Ritter C., Eremin E., Sofronova S., Kartashev A., Dubrovskiy A., Bezmaternykh L. (2017) Magnetic structure of Cu2MnBO5 ludwigite: thermodynamic, magnetic properties and neutron diffraction study. J. Phys.: Condens. Matter., 29, 245801.

41. Moshkina E., Sofronova S., Veligzhanin A., Molokeev M., Nazarenko I., Eremin E., Bezmaternykh L. (2016) Magnetism and structure of Ni2MnBO5 ludwigite. J. Magn. Magn. Mat., 402, 69-75.

42. Norrestam R., Nielsen K., Sotofte I., Thorup N. (1989) Structural investigation of two synthetic oxyborates: The mixed magnesium-manganese and the pure cobalt ludwigites, Mg1.93(2)Mn1.07(2)O2BO3 and Co3O2BO3. Zeitschrift für Kristallographie, 189, 33-41.

43. Norrestam R., Dahl S., Bovin J.-O. (1989) The crystal structure of magnesium-aluminium ludwigite, Mg2.11Al0.31 Fe0.53Ti0.05Sb0.01BO5, a combined single crystal X-ray and HREM study. Zeitschrift für Kristallographie, 187, 201-211.

44. Norrestam R., Kritikos M., Nielsen K., Søtofte I., Thorup N. (1994) Structural Characterizations of Two Synthetic Ni-Ludwigites, and Some Semiempirical EHTB Calculations on the Ludwigite Structure Type. J. Solid State Chem., 111(2), 217-223.

45. Pekov I.V., Vakhrusheva N.V., Zubkova N.V., Yapaskurt V.O., Shelukhina Y.S., Erokhin Y.V., Bulakh M.O., Britvin S.N., Pushcharovsky D.Y. (2021) Savelievaite, IMA 2021-051. CNMNC Newslett. 63; Mineral. Magaz., 85(6), 910-915.

46. Popov D.V., Gavrilova T.P., Gilmutdinov I.F., Cherosov M.A., Shustov V.A., Moshkina E.M., Bezmaternykh L.N., Eremina R.M. (2021) Magnetic properties of ludwigite Mn2.25Co0.75BO5. J. Phys. Chem. Solids, 148, 109695.

47. Sofronova S.N., Eremin E.V., Moshkina E.M., Selyanina A.V., Bondarenko G.N., Shabanov A.V. (2022) Synthesis, structural and magnetic properties of ludwigite Mn1.32Ni0.85Cu0.83BO5. Phys. Solid State, 64(11), 1743-1749.

48. Stenger C.G., Verschoor G.C., Ijdo D.J. (1973) The crystal structure of Ni5TiB2O10. Mater. Res. Bull., 8, 1285.

49. Tschermak G. (1874) Ludwigit, ein neues Mineral aus dem Banate. Justus Liebigs Annalen der Chemie, 174(1), 112-122.

50. Utzolino A., Bluhm K. (1996) Neue Einsichten zur Stabilisierung des Hulsit-Strukturtyps am Beispiel von MnII,2MnIII(BO3)O2 und MnIISrMnIII(BO3)O. Z. Naturforsch., 51b, 1433-1438.


Review

For citations:


Biryukov Ya.P., Zinnatullin A.L., Bubnova R.S., Vagizov F.G., Shablinskii A.P., Filatov S.K., Pekov I.V. Oxoborates of the ludwigite group: Natural and mineral-like compounds as prospective materials. LITHOSPHERE (Russia). 2024;24(2):226-239. (In Russ.) https://doi.org/10.24930/1681-9004-2024-24-2-226-239

Views: 438


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)