Preview

Литосфера

Расширенный поиск

Приповерхностная характеристика базальтов провинции Сукадана на основе гравитационного метода (Лампунг, Индонезия)

https://doi.org/10.24930/1681-9004-2023-23-6-1027-1037

Аннотация

Объект исследований. Геологический профиль базальтовой провинции Сукадана на тыловой дуге у края о-ва Суматра привлекает внимание исследователей неясным положением геологических структур и их взаимоотношением с региональной геологией Сундаленд. Цель работы. Выяснение типа и характера геологических структур, контролирующих базальтовую провинцию Сукодана (SBP) на поверхности, распределение базальта Сукадана в недрах и его связь с региональной тектоникой Сундаленда. Материалы и методы. Была проведена вторичная обработка карты аномалий Буге (1991) на территории квадрата Тан-юнгкаранг. Результаты. В ходе работы было обнаружено, что главное извержение располагалось в центре (SBP). Данные последующего моделирования показали, что мощность (SBP) достигает 3200 м. Установлено, что развитие (SBP) контролировалось двумя нормальными разломами СЗ-ЮВ простирания и одной трещинной структурой. Эти разрывы служили первичными каналами магмы, поднимающейся от мантии к земной поверхности. Был также выявлен нормальный разлом меридионального простирания и широтный правосторонний сдвиг, которые образовали ранне-олигоценовую дополнительную подвижку магмы к поверхности. Заключение. Нормальные меридиональные разломы коррелировали с ороклинальным изломом Сундаленда. Эти разломы развивались в пределах широкой раздвиговой площади, что способствовало утонению континентальной литосферы. Между тем, четвертичные СЗ-ЮВ трещины коррелируют с развитием Большого разлома Суматры. При его исследовании обращают на себя внимание две ключевые точки: образование СЗ-ЮВ трещин было вызвано движением Большого разлома Суматры, а утоньшение островодужной части коры происходило благодаря многочисленным структурам растяжения, которые способствовали подъему к поверхности (SBP) магмы.

Об авторах

Л. П. Сирингоринго
Бандунгский технологический институт; Суматринский технологический институт
Индонезия

40132, Бандунг; 
35365, Южный Лампунг



Б. Сапийе
Бандунгский технологический институт
Индонезия

40132, Бандунг



А. Рудьяван
Бандунгский технологический институт
Индонезия

40132, Бандунг



И. Г. Б. Е. Сусипта
Бандунгский технологический институт
Индонезия

40132, Бандунг



Список литературы

1. Abdurrachman M., Widiyantoro S., Priadi B., Ismail T. (2018) Geochemistry and structure of krakatoa volcano in the Sunda Strait, Indonesia. Geosci., 8, 1-10. https://doi.org/10.3390/geosciences8040111

2. Ayalew D., Jung S., Romer R.L., Garbe-Schönberg D. (2018) Trace element systematics and Nd, Sr and Pb isotopes of Pliocene flood basalt magmas (Ethiopian rift): A case for Afar plume-lithosphere interaction. Chem. Geol., 493, 172-188. https://doi.org/10.1016/j.chemgeo.2018.05.037

3. Bora D.K., Borah K., Goyal A. (2016) Crustal shear-wave velocity structure beneath Sumatra from receiver function modeling. J. Asian Earth Sci., 121, 127-138. https://doi.org/10.1016/j.jseaes.2016.03.007

4. Coffin M., Eldholm O. (1994) Large igneous provinces: Crustal structure, dimensions, and external consequences. Revs. Geophys., 32, 1-36.

5. Contributor Q. (2022) QGIS.org.

6. Curie C.A., Hyndman R.D. (2006) The thermal structure of subduction zone back arcs. J. Geophys. Res. Solid Earth, 111, 1-22. https://doi.org/10.1029/2005JB004024

7. De Souza Z.S., Vasconcelos P.M., Knesel K.M., da Silveira Dias L.G., Roesner E.H., Cordeiro de Farias P.R., de Morais Neto J.M. (2013) The tectonic evolution of Cenozoic extensional basins, northeast Brazil: Geochronological constraints from continental basalt 40 Ar/ 39 Ar ages. J. South Am. Earth Sci., 48, 159-172. https://doi.org/10.1016/j.jsames.2013.09.008

8. Developer O.M. (2019) Geosoft Oasis Montaj Data Processing and Analysis Systems for Earth Science Applications.

9. Doust H., Noble R. (2008) Petroleum systems of Indonesia. Mar. Pet. Geol., 25, 103-129.

10. Evariste N.H., Genyou L., Tabod T.C., Joseph K., Severin N., Alain T., Xiaoping K.E. (2014) Crustal structure beneath Cameroon from EGM2008. Geod. Geodyn., 5, 1-10. https://doi.org/10.3724/sp.j.1246.2014.01001

11. Faccenna C., Becker T.W., Lallemand S., Lagabrielle Y., Funiciello F., Piromallo C. (2010) Subduction-triggered magmatic pulses: A new class of plumes? Earth Planet. Sci. Lett., 299, 54-68. https://doi.org/10.1016/j.epsl.2010.08.012

12. Fan X., Chen Q.F., Ai Y., Chen L., Jiang M., Wu Q., Guo Z. (2021) Quaternary sodic and potassic intraplate volcanism in northeast China controlled by the underlying heterogeneous lithospheric structures. Geology, 49, 1260-1264. https://doi.org/10.1130/G48932.1

13. Girard G., van Wyk de Vries B. (2005) The Managua Graben and Las Sierras-Masaya volcanic complex (Nicaragua); pull-apart localization by an intrusive complex: results from analogue modeling. J. Volcanol. Geotherm. Res., 144, 37-57. https://doi.org/10.1016/j.jvolgeores.2004.11.016

14. Hall R., Morley C.K. (2004) Sundaland basins, in: Geophysical Monograph Series. American Geophysical Union, 55-85. https://doi.org/10.1029/149GM04

15. Hasibuan R.F., Ohba T., Abdurrachman M., Hoshide T. (2020) Temporal Variations of Petrological Characteristics of Tangkil and Rajabasa Volcanic Rocks, Indonesia. Indones. J. Geosci., 7, 135-159. https://doi.org/10.17014/ijog.7.2.135-159

16. Hutchison C.S. (2010) Oroclines and paleomagnetism in Borneo and South-East Asia. Tectonophysics, 496, 53-67. https://doi.org/10.1016/j.tecto.2010.10.008

17. Inkscape’s Contributors (2022) Inkscape.

18. Johnston S.T., Weil A.B., Gutierrez-Alonso G. (2013) Oroclines: Thick and thin. Geol. Soc. Am. Bull., 125, 643-663. https://doi.org/10.1130/B30765.1

19. Julzarika A., Harintaka (2019) Indonesian DEMNAS: DSM or DTM?, in: AGERS 2019 - 2nd IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology: Understanding and Forecasting the Dynamics of Land, Ocean and Maritime, Proceeding. IEEE, 31-36. https://doi.org/10.1109/AGERS48446.2019.9034351

20. Kanthiya S., Mangkhemthong N., Morley C.K. (2019) Structural interpretation of Mae Suai Basin, Chiang Rai Province, based on gravity data analysis and modelling. Heliyon, 5, e01232. https://doi.org/10.1016/j.heliyon.2019.e01232

21. Ketchum K.Y., Heaman L.M., Bennett G., Hughes D.J. (2013) Age, petrogenesis and tectonic setting of the Thessalon volcanic rocks, Huronian Supergroup, Canada. Precambrian Res., 233, 144-172. https://doi.org/10.1016/j.precamres.2013.04.009

22. Li J., Ding W., Lin J., Xu Y., Kong F., Li S., Huang X., Zhou Z. (2021) Dynamic processes of the curved subduction system in Southeast Asia: A review and future perspective. Earth-Science Rev., 217, 103647. https://doi.org/10.1016/j.earscirev.2021.103647

23. Lichoro C.M., Árnason K., Cumming W. (2019) Joint interpretation of gravity and resistivity data from the Northern Kenya volcanic rift zone: Structural and geothermal significance. Geothermics, 77, 139-150. https://doi.org/10.1016/j.geothermics.2018.09.006

24. Mangga S.A., Amirudin T., Suwarti S., Gafoer dan Sidarto. (1993) Peta Geologi Lembar Tanjungkarang, Sumatra, Bandung: Pusat Penelitian dan Pengembangan Geologi.

25. Metcalfe I. (2017) Tectonic evolution of Sundaland. Bull. Geol. Soc. Malaysia, 63, 27-60. https://doi.org/10.7186/bgsm63201702

26. Nguiya S., Mouzong Pemi M., Tokam A.P., Ngatchou Heutchi É., Lemotio W. (2019) Crustal structure beneath the Mount Cameroon region derived from recent gravity measurements. Comptes Rendus - Geosci., 351, 430-440. https://doi.org/10.1016/j.crte.2019.05.001

27. Nishimura S., Nishida J., Yokoyama T., Hehuwat F. (1986) Neo-tectonics of the Strait of Sunda, Indonesia. J. Southeast Asian Earth Sci., 1, 81-91. https://doi.org/10.1016/0743-9547(86)90023-1

28. Pramumijoyo S., Sebrier M. (1991) Neogene and quaternary fault kinematics around the Sunda Strait area, Indonesia. J. Southeast Asian Earth Sci., 6, 137-145. https://doi.org/10.1016/0743-9547(91)90106-8

29. Ringwood A. (1990) Petrogenesis of intraplate magmas and structure of the upper mantle. Chem. Geol., 82, 187-207.

30. Romeur M. (1991) Series magmatiques arc et arriere-arc de la sonde: nature des sources impliquees (elements en trace et isotopes Sr-Nd-Pb). These de Doctorat, Universite de Bretagne Occidentale, Brest.

31. Seigel H. (1995) A guide to high precision land gravimeter surveys. Ontario, Canada, 132 p.

32. Setiadi I. (2020) Konfigurasi Batuan Dasar dan Delineasi Sub Cekungan Banyumas Berdasarkan Analisis Data Gayaberat. J. Geol. dan Sumberd. Miner., 2245, 070034.

33. Setiadi I., Setyanta B., Nainggolan T.B., Widodo J. (2019) Delineation of Sedimentary Subbasin and Subsurface Interpretation East Java Basin in the Madura Strait and Surrounding Area Based on Gravity Data Analysis. Bull. Mar. Geol., 34, 1-16. https://doi.org/10.32693/bomg.34.1.2019.621

34. Shahraki M. (2013) Dynamics of mantle circulation and convection : The signatures in the satellite derived gravity fields. Johann Wolfgang Goethe University.

35. Siringoringo L.P., Paembonan A.Y., Rahmanda V. (2021) Fault Reassessment in Way Huwi Area , South Lampung using Gravity Method Fault Reassessment in Way Huwi Area. J. Geofis., 19, 36-40.

36. Soeria-Atmaja R., Maury R.., Bougault H., Joron J., Bellon H., Hasanunddin D. (1986) Présence de tholeiites d’arrière-arc Quatenariés en Indonésie: Les basaltes de Sukadana (Sud de Sumatra), in: Réunion Des Sciences de La Terre. Clermont-Ferrand.

37. Stein S., Okal E.A. (2005) Speed and size of the Sumatra earthquake. Nature, 434, 581-582. https://doi.org/10.1038/434581a

38. Susilohadi S., Gaedicke C., Djajadihardja Y. (2009) Structures and sedimentary deposition in the Sunda Strait, Indonesia. Tectonophysics, 467, 55-71. https://doi.org/10.1016/j.tecto.2008.12.015

39. Wang Y., Santosh M., Luo Z., Hao J. (2015) Large igneous provinces linked to supercontinent assembly. J. Geodyn., 85, 1-10. https://doi.org/10.1016/j.jog.2014.12.001

40. Wardhana D.D., Harjono H., Sudaryanto S. (2014) Struktur Bawah Permukaan Kota Semarang Berdasarkan Data Gayaberat. J. Ris. Geol. dan Pertamb., 24, 53. https://doi.org/10.14203/risetgeotam2014.v24.81

41. Yan Q., Shi X., Metcalfe I., Liu S., Xu T., Kornkanitnan N., Sirichaiseth T., Yuan L., Zhang Y., Zhang H. (2018) Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Sci. Rep., 8(2640). https://doi.org/10.1038/s41598-018-20712-7

42. Zhang A., Guo Z., Afonso J.C., Handley H., Dai H., Yang Y., Chen Y.J. (2022) Lithosphere–asthenosphere interactions beneath northeast China and the origin of its intraplate volcanism. Geology, 50, 210-215. https://doi.org/10.1130/G49375.1

43. Zi J.W., Haines P.W., Wang X.C., Jourdan F., Rasmussen B., Halverson G.P., Sheppard S., Li C.F. (2019) Pyroxene 40 Ar/ 39 Ar Dating of Basalt and Applications to Large Igneous Provinces and Precambrian Stratigraphic Correlations. J. Geophys. Res. Solid Earth, 124, 8313-8330. https://doi.org/10.1029/2019JB017713


Рецензия

Для цитирования:


Сирингоринго Л.П., Сапийе Б., Рудьяван А., Сусипта И. Приповерхностная характеристика базальтов провинции Сукадана на основе гравитационного метода (Лампунг, Индонезия). Литосфера. 2023;23(6):1027-1037. https://doi.org/10.24930/1681-9004-2023-23-6-1027-1037

For citation:


Siringoringo L.P., Sapiie B., Rudyawan A., Sucipta I. Subsurface delineation of Sukadana Basalt Province based on gravity method, Lampung, Indonesia. LITHOSPHERE (Russia). 2023;23(6):1027-1037. https://doi.org/10.24930/1681-9004-2023-23-6-1027-1037

Просмотров: 484


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)