Магнитные ограничения и инверсионная восприимчивость разлома Балапур Центрального Кашмира СЗ Гималаев
https://doi.org/10.24930/1681-9004-2023-23-2-292-302
Аннотация
Объект исследования. Балапурский разлом, расположенный в центральной части Кашмирского бассейна в СЗ Гималаях.
Материалы и методы. Данные общей магнитной интенсивности региона были получены с помощью наземных магнитных съемок, проведенных протонными прецизионными магнетометрами с интервалом 15 м, проводились также исследования магнитных ограничений и инверсий Балапурского разлома.
Результаты. Установленная средняя магнитная интенсивность усредняется до 97.7 нТл с минимумом 45.8 и максимумом 140.9 нТл. Минимумы в диапазоне от 45.8 до 55.8 нТл получены в сетчатом профиле Балапурского разлома. Кроме того, индекс чувствительности, связанный с отказом, был зарегистрирован от 0.0035 до 0.0015 SI, а наблюдаемые и прогнозируемые значения отклика находились в диапазоне от 67.1 до 87.7 и от 67.4 до 86.6 нТл соответственно.
Выводы. Предполагается, что Балапурский разлом в Центральном Кашмире вызвал высокую подповерхностную гидравлическую активность и, следовательно, низкие магнитные аномалии. Выявлена область мощных минимумов, связанных с разломом, а также наличие структур, связанных с основной частью Балапурского разлома.
Ключевые слова
Об авторах
А. М. ДарИндия
190006
Сринагар
С. К. Бухари
Индия
190006
Сринагар
Список литературы
1. Ahmad S., Bhat M. I. (2012) Tectonic geomorphology of the Rambiara basin, SW Kashmir Valley reveals emergent out-of-sequence active fault system. Himal. Geol., 33 (2), 162-172.
2. Ahmad S., Bhat M. I., Madden C., Bali B. S. (2014) Geomorphic analysis reveals active tectonic deformation on the eastern flank of the Pir-Panjal range, Kashmir Valley, India. Arab. J. Geosci., 7(2225-2235). doi: 10.1007/s12517-013-0900-y
3. Arkani-Hamed J., Langel R. A., Purucker M. (1994) Magnetic anomaly maps of the Earth derived from POGO and Magsat data. J. Geophys. Res., 99: 24075-24090.
4. Blakely R. J. (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge, UK.
5. Cain J. C., Wang Z., Schmitz D. R., Meyer J. (1989) The geomagnetic spectrum for 1980 and core crustal separation. Geophys. J., 97: 443-447.
6. Clifton R. (2015) Magnetic depths to basalts: extension of spectral depths method. Explor. Geophys., 46 (3), 284-296. doi: 10.1071/EG13096
7. Clifton R. (2018) Magnetic depth transects of the Northern Territory. Northern Territory Geological Survey, Digital Information Package DIP 020.
8. Cooper G. R. J. (2000) Gridding Gravity Data Using an Equivalent Layer. Comput. Geosci., 26 (2), 227-233. doi: 10.1016/S0098-3004(99)00089-8
9. Cordell L. (1992) A Scattered Equivalent-Source Method for Interpolation and Gridding of Potential-Field Data in Three Dimensions. Geophysics, 57 (4), 629-636. doi: 10.1190/1.1443275
10. Dar A. M. (2015) An Approach of Remote Sensing and GIS for the Delineation of Lineaments in the Suru Valley (Ladakh Himalayas). J. Remote Sensing GIS, 4 (2), 4:144, doi: 10.4172/2469-4134.1000144
11. Dar A. M., Bukhari S. K. (2020) Characteristics of magnetic anomalies and subsurface structure constraints of Balapur fault in Kashmir basin, NW Himalaya. Phys. Earth Planet. Inter., 309, 106599. doi: 10.1016/j.pepi.2020.106599
12. Dar A. M., Lasitha S. (2015) Application of Geophysical Ground Magnetic Method for the Delineation of Geological Structures: A Study in Parts of Villupuram District, Tamilnadu. J. Geol. Geophys., 4 (3), 4: 209. URL: https://www.longdom.org/open-access/application-of-geophysical-ground-magnetic-method-for-the-delineation-of-geological-structures-a-study-in-parts-of-villu-40031.html
13. Dar A. M., Lasitha S., Bukhari K., Yousuf M. (2017) Delineating Deep Basement Faults in Eastern Dharwar Craton through Systematic Methods of Geophysics and Remote Sensing vis-à-vis the Concerns of Moderate Seismicity. J. Geogr. Nat. Disast., 7 (1), 7:184. doi: 10.4172/2167-0587.1000184
14. Dobrin M. B., Savit C. H. (1988) Introduction to Geophysical Prospecting. 4th Edition. McGraw-Hill, N. Y., 867 p.
15. Ellis R., de Wet B., Macleod I. M. (2012) Inversion of magnetic data from remanent and induced sources. Presented at the 22sup>nd</sup> ASEG International Geophysical Conference. Australia Society of Exploration Geophysicists.
16. Emilia D. A. (1973) Equivalent Sources Used as an Analytic Base for Processing Total Magnetic Field Profiles. Geophysics, 38 (2), 339-348. doi: 10.1190/1.1440344
17. Gonzales W. D., Tsuritani B., Clua De Gonzales A. (1999) Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88, 529-562. http://solid_earth.ou.edu/notes/potential/legendre.gif (Copyright 2004, J. Ahern)
18. Grauch V. J. S., Hudson M. R., Manor S. A. (2000) Aeromagnetic signatures of intrabasinal faults, Albuquerque basin, New Mexico: Implications for layer thickness and magnetization: SEG Technical Program Expanded Abstracts, 363-366.
19. Henkel H., Guzmin M. (1977) Magnetic feature of fracture zones. Geoexploration, 15 (3), 173-181.
20. Jackson A., Jonkers A. R. T., Walker M. R. (2000) Four centuries of geomagnetic secular variation from historical records. Philos. T. Roy Soc. A., 358 (1768), 957-990. doi: 10.1098/rsta.2000.0569
21. Kivior I. (1996) A geophysical study of the structure and crustal environment of the Polda Rift, South Australia. Ph. D. thesis. Department of Geology and Geophysics. The University of Adelaide.
22. Kono M., Roberts H. R. (2002) Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys., 40 (4), 4-1-4-53, doi: 10.1029/2000RG000102
23. Kowalczyk P., Oldenburg D., Phillips N., Nguyen T. H., Thomson V. (2010) Acquisition and analysis of the 2007-2009 geoscience bc airborne data: Australian Society of Exploration Geophysicists – PESA Airborne Gravity Workshop.
24. Lanza R., Meloni A. (2006) The Earth’s Magnetism: An Introduction for Geologists. N. Y., Berlin: Springer, 278 p.
25. Lelievre P. G., Oldenburg D. W. (2009) A 3d total magnetization inversion applicable when significant, complicated remanence is present. Geophysics, 74 (3), L21-L30.
26. Li Y., Shearer S., Haney M., Dannemiller N. (2010) Comprehensive approaches to 3d inversion of magnetic data affected by remanent magnetization. Geophysics, 75 (1), L1-L11.
27. Liu S., Hu X., Liu T., Feng J., Gao W., Qiu L. (2013) Magnetization vector imaging for borehole magnetic data based on magnitude magnetic anomaly. Geophysics, 78 (6), D429-D444.
28. Madden C., Ahmad S., Meigs A. (2011) Geomorphic and paleoseismic evidence for late Quaternary deformation in the southwest Kashmir Valley, India: Out of-sequence thrusting, or deformation above a structural ramp? Amer. Geophys. Union Abstr., T54B-07.
29. Malin S. R. C., Barraclough D. R. (1982) 150sup>th </sup> anniversary of Gauss’s first absolute magnetic measurement. Nature, 297, 285.
30. Martinez C., Li Y. (2015) Lithologic characterization using airborne gravity gradient and aeromagnetic data for mineral exploration: A case study in the Quadrilatero´ Ferr´ıfero, Brazil: Interpretation.
31. Meixner A. J., Johnston S. (2012) An iterative approach to optimising depth to magnetic source using the spectral method. ASEG 22sup>nd</sup> Geophysical Conference and Exhibition, Brisbane 2012.
32. Mendonca C. A., Silva J. B. C. (1994) The Equivalent Data Concept Applied to the Interpolation of Potential Field Data. Geophysics, 59 (5), 722-732. doi: 10.1190/1.1443630
33. Mendonca C. A., Silva J. B. C. (1995) Interpolation of Potential-Field Data by Equivalent Layer and Minimum Curvature: A Comparative Analysis. Geophysics, 60 (2), 399-407. doi: 10.1190/1.1443776
34. Phillips J. D. (2014) Using vertical Fourier transforms to invert potential-field data to magnetization or density models in the presence of topography. SEG Technical Program Expanded Abstracts 2014, 1339-1343. doi: 10.1190/segam2014-0226.1
35. Pilkington M. (2016) Resolution measures for 3D magnetic inversions. Geophysics, 81 (2), J15-J23. doi: 10.1190/GEO2015-0081.1
36. Pilkington M., Beiki M. (2013) Mitigating remanent magnetization effects in magnetic data using the normalized source strength. Geophysics, 78 (3), J25-J32. doi: 10.1190/geo2012-0225.1
37. Pilkington M., Keating P. (2004) Contact mapping from gridded magnetic data–a comparison of techniques. Explor. Geophys., 35 (4), 306-311. doi: 10.1071/EG04306
38. Sharma P. V. (1997) Environmental and engineering geophysics. Cambridge University Press. Cambridge, UK.
39. Silva J. B. C. (1986) Reduction to the Pole as an Inverse Problem and Its Application to Low-Latitude Anomalies. Geophysics, 51 (2), 369-382. doi: 10.1190/1.1442096
40. Spector A., Grant F. S. (1970) Statistical models for interpreting aeromagnetic data. Geophysics, 35 (2), 293-302.
41. Sun J., Li Y. (2011) Geophysical inversion using petrophysical constraints with application to lithology differentiation. 81sup>st</sup> SEG Annual Meeting, 2644-2648.
42. Telford W. M., Geldhart L. P., Sheriff R. E. (1990) Applied Geophysics (second ed.). Cambridge University Press, Cambridge, 770 p.
43. Tontini F. C., Cocchi L., Carmisciano C. (2006) Depth-to-the-bottom optimization for magnetic data inversion: Magnetic structure of the Latium volcanic region, Italy. J. Geophys. Res., 111 (B11), B11104. doi: 10.1029/2005JB004109
44. Valet J. P. (2003) Time variations in geomagnetic intensity. Rev. Geophys., 41 (1), 4:1-44. doi: 10.1029/2001RG000104
Рецензия
Для цитирования:
Дар А.М., Бухари С.К. Магнитные ограничения и инверсионная восприимчивость разлома Балапур Центрального Кашмира СЗ Гималаев. Литосфера. 2023;23(2):292-302. https://doi.org/10.24930/1681-9004-2023-23-2-292-302
For citation:
Dar A.M., Bukhari S.K. Magnetic constraints and susceptible inversions of Balapur Fault at central Kashmir Basin, NW Himalaya. LITHOSPHERE (Russia). 2023;23(2):292-302. https://doi.org/10.24930/1681-9004-2023-23-2-292-302