Preview

LITHOSPHERE (Russia)

Advanced search

Mineral assemblages and behavior of ore-forming elements at rock-seawater interaction in hydrothermal conditions

Abstract

A hydrothermal interaction of oceanic rocks with seawater was simulated in the Selektor program at 350°C and 25 MPa. It was found that the maximum extraction of major ore-forming elements of massive sulfide deposits from basalts occurs under reducing conditions: 2.9 Ч 10-3 mol Fe at ξ = -lg(rock/seawater) of 2.1, 3.3 Ч Ч 10-4 mol Zn at ξ = 0.625 and 5.02 Ч 10-5 mol Cu at ξ = 1.4. The major transport complexes of these elements in hydrothermal fluids are FeCl20 > FeCl+ > Fe2+, ZnCl+ > ZnCl20 > ZnCl3-, CuCl32- > CuCl2-. According to recycling model, the mafic rocks (gabbro, basalts) are the most likely source of metals for hydrothermal sulfide systems.

About the Author

G. A. Tret'yakov
Institute of Mineralogy UB RAS
Russian Federation


References

1. Гричук Д.В. (2000) Термодинамические модели субмаринных гидротермальных систем. М.: Науч. мир, 304 с.

2. Масленников В.В., Аюпова Н.Р., Масленникова С.П., Третьяков Г.А., Мелекесцева И.Ю., Сафина Н.П., Белогуб Е.В., Ларж Р.Р., Данюшевский Л.В., Целуйко А.С., Гладков А.Г., Крайнев Ю.Д. (2014) Токсичные элементы в колчеданообразующих системах. Екатеринбург: РИО УрО РАН, 340 с.

3. Douville E., Charlou J.L., Oelkers E.H., Bienvenu P., Jove Colon C.F., Donval J.P., Fouquet Y., Prieur D., Appriou P. (2002) The rainbow vent fluids (36°14'N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 184, 37-48.

4. Karpov I.K., Chudnenko K.V., Kulik D.A. (1997) Modeling chemical mass transfer in geochemical processes: Thermodynamic relations? conditions of equilibrium, and numerical algorithms. Amer. J. Sci. 297, 767-806.

5. McCollom T.M., Shock E.L. (1998) Fluid-rock interactions in the lower oceanic crust: Thermodynamic models of hydrothermal alteration. J. Geophys. Res. 103(B1), 547-575.

6. Melekestseva I.Yu., Tret'yakov G.A., Nimis P., Yuminov A.M., Maslennikov V.V., Maslennikova S.P., Kotlyarov V.A., Beltenev V.E., Danyushevsky L.V., Lar-ge R. (2014) Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87′ N): Evidence for phase separation and magmatic input. Marine Geol. 349, 37-54.

7. Palandri J.L., Reed M.H. (2004) Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geoch. Cosmoch. Acta. 68(5), 1115-1133.

8. Pokrovski G.S., Tagirov B.R., Schott J., Bazarkina E.F., Hazemann J.-L., Proux O. (2009) An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids. Geoch. Cosmoch. Acta. 259(1-2), 17-29.

9. Steele J.H., Turekian K.K., Thorpe S.A. (Eds.) (2010) Marine Chemistry and Geochemistry: A Derivative of Encyclopedia of Ocean Sciences. Elsevier, London, 631 p.

10. Thornton E.C., Seyfried W.E. Jr. (1987) Reactivity of organic-rich sediment in seawater at 350°C, 500 bars: Experimental and theoretical constraints and implications for the Guaymas Basin hydrothermal system Geoch. Cosmoch. Acta. 51, 1997-2010.


Review

For citations:


Tret'yakov G.A. Mineral assemblages and behavior of ore-forming elements at rock-seawater interaction in hydrothermal conditions. LITHOSPHERE (Russia). 2015;(6):142-147. (In Russ.)

Views: 401


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)