Preview

LITHOSPHERE (Russia)

Advanced search

The Bystrinskii gabbro massif: the first data concerning composition, age and formation affiliation

https://doi.org/10.24930/1681-9004-2021-21-1-55-69

Abstract

Research subject. The research covered the geological position, material composition and rock age of a comparatively small (about 32 km2) Bystrinskii gabbro massif. This massif underlies a tectonic plate package consisting of serpentinized dunits and harzburgites of the ophiolite association in the Eastern boundary of the Middle Urals.
Methods. The content of petrogenic elements was measured by the Х-ray fluorescence method using an Х-ray multichannel spectrometer CPM-35. The analysis of rare-earth element contents was conducted using a NexION 300S mass-spectrometer. The composition of rock-forming minerals was studied using an Х-ray microanalyzer CamecaSX100. The age of the massif was determined by the 147Sm-143Nd method of isotope dating. Amphibole geobaometers were used to determine the depth of the rock formation.
Results. According to the petro- and geochemical features and composition of the rock-forming minerals, the 147Sm-143Nd isotope age of the rocks was found to be 587 Ma. It was shown that gabbroids in the massif are represented by two petrographic varieties. The predominant type of the rocks is gabbrodolerites, which are similar to the isotropic gabbros of undisturbed ophiolite sections in terms of mineral composition, structure, geochemical features and the depth of formation (not more than 2–3 km). The mapping results showed the massif under study to be the largest among those described thus far. The medium grained gabbroids, which are present in lesser quantities, differ sharply from gabbrodolerites in terms of lower contents of Fe, Ti, both rockforming (K, Na) and rare (Li, Rb, Cs) alkalis, Ba, V, Y, Nb, Zr, Hf and elements of rare-earth group, as well as by significantly higher quantities of Ca, Mg and Cr. The depth of their formation is 10–12 km, which corresponds to the upper mantle.
Conclusions. The obtained information demonstrates that fragments of two levels of the ophiolite section are tectonically aligned in the Bystrinskii massif: relatively shallow isotropic gabbros of the upper part of the ophiolite section and deep gabbros of the mantle part of the ophiolite section.

About the Authors

V. N. Smirnov
A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of RAS
Russian Federation
15 Akad. Vonsovsky st., Еkaterinburg 620016


I. I. Kazakov
Urals Geological Mapping Expedition
Russian Federation
55 Vainer st., Ekaterinburg 620014


V. S. Ponomarev
A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of RAS
Russian Federation
15 Akad. Vonsovsky st., Еkaterinburg 620016


Yu. L. Ronkin
A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of RAS
Russian Federation
15 Akad. Vonsovsky st., Еkaterinburg 620016


E. V. Storozhenko
Urals Geological Mapping Expedition
Russian Federation
55 Vainer st., Ekaterinburg 620014


References

1. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya ural’skaya. List O-41 – Ekaterinburg. Ob’’yasnitel’naya zapiska [The state geological map of the Russian Federation. Scale 1:1000000 (third generation). Series Uralic. List O-41 – Ekaterinburg. Explanatory note]. (2011) St.Peterburg, VSEGEI Cartograhic Factory, 492 p. (In Russian)

2. Hammarstrom J.M., Zen E-An (1986) Aluminium in hornblend: An empirical igneous geobarometer. Amer. Mineral., 76, 1297-1313.

3. Kazakov I.I., Storozhenko E.V., Stefanovskii V.V. Koshe-voi Yu.N., Koz’min S.V., Martynov S.A., Fadeicheva I.F., Ronkin Yu.L., Lukin V.G. (2017) Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 200 000 (izdanie vtoroe). Serya ural’skaya. List O-41-XXVI (Asbest). Ob’’yasnitel’naya zapiska [The state geological map of the Russian Federation, scale 1 : 200 000 (second edition). List O-41-XXVI (Asbest). Explanatory note] St.Peterburg VSEGEI Cartograhic Factory, 284 p. (In Russian)

4. Koroteev V.A., Dianova T.V., Kabanova L.Ya. (1979) Srednepaleozoiskii vulkanizm Vostochnoi zony Urala [Middle Paleozoic volcanism of the Eastern zone of the Urals]. Moscow, Nauka Publ., 130 p. (In Russian)

5. Ludwig K.R. (2008) User’s Manual for ISOPLOT/Ex, a Geochronological toolkit for Microsoft Excel. Vers. 3.6. Berkeley Geochronol. Center Spec. Publ., (4), 77 p.

6. McIntyre G.A., Brooks C., Compston W., Turek A. (1966) The statistical assessment of Rb-Sr isochrons. J. Geophys. Res., 71, 5459-5468.

7. Nomenclature of amphiboles: Report of the Subcommittee on amphiboles of the International mineralogical association, Commission on new minerals and mineral names. (1997) Zapiski RMO, (6), 82-102. (In Russian)

8. Petrov G.A., Ronkin Yu.L., Maslov A.V., Lepikhina O.P. (2010) Vendian and Silurian ophiolite-formation stages on the eastern slope of the Middle Urals. Dokl. Earth Sci. 432(1), 570-576.

9. Petrov G.A. (2019) Dokembryiskie kompleksy fundamenta paleozoiskoi ostrovoduzhnoi sistemy na Srednem urale [Precambrian complexes of Paleozoic island arc system in the Middle Urals]. Moscow, RUSAINS Publ., 276 p. (In Russian)

10. Popov V.S., Kremenetskii A.A., Belyatskii B.V. (2008) Preordovian Sm-Nd-isotopic age of ultramafic rocks in ophiolitic belts of the Urals: specified date. “Strukturno-veshchestvennye kompleksy i problemy geodinamiki dokembriya fanerozoiskikh orogenov”. Materialy Mezhdunar. konferentsii. III chtenia pamyati S.N. Ivanova [“Struktur-material complexes and problems of Precambrian geodynamics in Phanerozoic orogens”. Materials of the Intern. Sci. Conf. III S.N. Ivanov reading]. Ekaterinburg, IGG UB RAS, 100-103. (In Russian)

11. Schmidt M.W. (1992) Amphibole composition in tonolites as a function of pressure: an experimental calibration of the Al-in-horblende barometer. Contrib. Mineral. Petrol., 110, 304-310.

12. Smirnov V.N., Fershtater G.B., Ivanov K.S. (2003) Sheme of tectonomagmatic zoning of the Middle Urals. Litosfera, (2), 45-56. (In Russian)

13. Smirnov V.N., Ivanov K.S., Simonov V.A., Ronkin Yu.L., Lepikhina O.P. (2009) About age and genesis of platinoid-bearing chromite mineralization in layered part of Kluchevskoi massif (Eastern slope of the Middle Urals).

14. Petrogenezis i rudoobrazovanie. XIV chtenya pamyati A.N. Zavaritskogo [Petrogenesis and ore formation. XIV A.N. Zavaritskyi reading]. Ekaterinburg, IGG UB RAS, 291-293. (In Russian)

15. Smirnov V.N., Ivanov K.S., Travin A.V. (2019) 40Ar/39Arage of deformations in Bazgenovo suture zone (Eastern boundary of the Middle Urals). Litosfera, 19(2), 242-249. (In Russian)

16. Sun S.-S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes (Eds. A.D. Saunders, M.J. Norry). Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ. London, 42, 313-345.


Review

For citations:


Smirnov V.N., Kazakov I.I., Ponomarev V.S., Ronkin Yu.L., Storozhenko E.V. The Bystrinskii gabbro massif: the first data concerning composition, age and formation affiliation. LITHOSPHERE (Russia). 2021;21(1):55-69. (In Russ.) https://doi.org/10.24930/1681-9004-2021-21-1-55-69

Views: 478


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)