Расширенный поиск

Xenocrysts and megacrysts of alkaline olivine-basalt-basanite-nephelinite association Makhtesh Ramon (Israel): interaction with carrier magmas and crystallographic transformations

Полный текст:


The article considers xenocrysts and megacrysts hosted in the rocks of Early Cretaceous olivine-basalt-basanite-nephelinite association that outcropped in the erosion crater of Makhtesh Ramon (Natural Reserve of Mishmar ha-Nagev, Israel). This magmatic rock association contains a wide spectrum of xenoliths trapped at different crustal levels. These are upper mantle, lower and upper crustal xenoliths. Mantle xenoliths are represented by peridotites, olivine clinopyroxenites, clinopyroxenites, olivine websterites, websterites and their amphibole-bearing analogues. Lower crustal xenoliths are mafic granulites, such as metagabbros and plagioclasites, whereas upper crustal xenoliths are the fragments of Neoproterozoic tuffs. Xenocrysts and megacrysts are the fragments of xenoliths that chipped from them on their way to the surface. Alterations in xenoliths, xenocrysts and megacrysts caused by the host melt constitute a common petrographic feature. Xenocrysts and megacrysts are mainly represented by minerals that are compatible with the magmatic rock association. These are olivine, clinopyroxene, amphibole, nepheline, plagioclase, anorthoclase, apatite, magnetite and spinel. The xenocrysts of quartz and orthopyroxene are incompatible with the SiO2-undersaturated host rock of this magmatic association. Main reasons determining the interaction between magma and xenoliths include rapid decompression, metamorphism and metasomatism. Xenocrysts are subjected to metamorphism that corresponds to high-temperature facies of contact metamorphism, up to the partial melting of xenocrysts. Metasomatism is directed at equalising the compositions of xenocrysts and eponymous minerals that crystallised from the host melt. There are several important criteria adopted to identify xenocrysts and distinguish them from phenocrysts. These are partial melting, solid-phase decomposition, decrystallisation of primary (before-trapping) textures, recrystallisation and self-faceting of initially xenomorphic grains into the crystals with perfect habits. The chemical composition of xenocrysts has mineral and geochemical indications of xenogenic origin, as well as the signs of a newly-formed substance.

Об авторах

Z. Yudalevich
Ben-Gurion University of the Negev

Zinovi Yudalevich

Department of Geological and Environmental Sciences

P.O.B. 653, Beer-Sheva, 84105 Israel

Ye. Vapnik
Ben-Gurion University of the Negev

Yevgeny Vapnik

Department of Geological and Environmental Sciences

P.O.B. 653, Beer-Sheva, 84105 Israel

Список литературы

1. Agafonov L.V., Kutolin V.A., Lesnov F.P. (1978) Influence of basaltic magma on xenoliths of ultramafic and mafic rocks, and relative stability of minerals in basaltic melt. Materialy po petrologii i mineralogii ultraosnovnykh i osnovnykh porod [materials on petrology and mineralogy of ultamafic and mafic rocks]. Novosibirsk, Nauka Publ., 67-84. (In Russian)

2. Arai S., Abe N. (1995) Reaction of orthopyroxene in peridotite xenoliths with alkali basalt melt and its implication for genesis of alpine-type chromitite. amer. Mineral., 80, 1041-1047.

3. Arzilli F., Carroll M.R. (2013) Crystallization kinetic of alkali feldspars in cooling and decompression induced crystallization experiments in trachytic melt. contrib. Mineral. petrol., 166, 1011-1027.

4. Baer G., Heimann A., Eshet Y., Weinberger R., Musset A., Sherwood G. (1995) The Saharonim Basalt: A Late Triassic – Early Jurassic intrusion in south-eastern Makhtesh Ramon. isr. J Earth sci., 44, 1-10.

5. Ban M., Witt-Eickschen G., Klein M., Seck H. (2004) The origin of glasses in hydrous mantle xenoliths from the West Eifel, Germany: incongruent break down of amphibole. contrib. Mineral. petrol., 148, 511-523.

6. Barns S., Roeder P. (2001)The range of spinel composition in Terrestrial mafic and ultramafic rocks. J. petrol., 42, 2279-2302.

7. Bédard J.H. (1988) Comparative amphibole chemistry of the Monteregian and White Mountain alkaline suits, and the origin of amphibole megacrysts in alkali basalts and lamprophyres. Miner. Mag., 52, 91-103.

8. Bentor Y. (1952) Magmatic intrusion and lava sheets in the Raman area of the Negev (southern Israel). Geol. Mag., 89, 129-140.

9. Binns R., Duggan M., Wilkinson J. (1970) High pressuremegacryst in alkaline lavas from northeastern South Wales with chemical analyses. amer. J. sci., 269, 132-168.

10. Boivin P. (1980) Données expérimental préliminaries sur la stabilité de la rhönite à 1 atmosphère. Application aux gisements naturels. Bull. Minéral., 103, 491-502.

11. Bonen D., Perlman I., Yelin J. (1980) The evolution of trace element concentrations in basic rocks from Israel and their petrogenesis. contrib. Mineral. petrol., 72, 397-414.

12. Brearley M., Scarfe C.M. (1986) Dissolution rates of upper mantle minerals in alkali basalt melt at high pessure: an experimental study and implications for ultramafic xenoliths survival. J. petrol., 27, 1157-1182.

13. Carpenter R., Edgar A., Thibault Y. (2002) Origin of spongy textures in clinopyroxenes and spinel from mantle xenoliths, Hessian Depression, Germany. Mineral. petrol., 74, 149-162.

14. Chepurov A.I., Zhimulev E.I., Agafonov L.V., Sonin V.M., Chepurov A.A., Tomilenko A.A. (2013) The stability of ortho- and clinopyroxenes, olivine, and garnet in kimberlitic magma. Geol. Geofiz., 54(4), 533-544. (In Russian)

15. Dal Negro A., Manoli S., Secco L., Piccirillo E.M. (1989) Megacrysticclinopyroxenes from Victoria (Australia): crystal chemical comparisons of pyroxenes from high and low pressure regimes. Eur. J. Mineral., 1, 105-121.

16. Dobosi G., Downes H., Emdey-Istin A., Jenner J. (2003) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian basin (Hungary). J. Mineral. Geochem., 178, 217-237.

17. Ehrenberg S. (1982) Petrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb, Navajo volcanic field. J. petrol., 23, 507-547.

18. Evans S., Nash W. (1979) Petrogenesis of xenoliths-bea ring basalts from southeastern Arizona. amer. Mineral., 64, 249-267.

19. Eyal M., Becker A., Samoilov V. (1996) Mt. Arod – an Early Cretaceous basanitic volcano with a fossil lava lake. israel J. Earth sci., 45, 31-38.

20. Fershtater G., Yudalevich Z. (2017) Mantle metasomatism and magma formation in continental lithosphere: data on xenoliths in alkali basalts from Makhtesh Ramon, Negev desert, Israel. Petrology, 25, 181-205.

21. Fershtater G.B., Yudalevich Z.A., Khiller V.V. (2016) Xenoliths in alkaline basaltoids of makhtesh Ramon (Negev, Israel) as indicators of mantle metasomatism and magma genesis. litosfera, (3), 5-26. (In Russian)

22. Francis D. (1991) Some implications of xenoliths glasses for the mantle sources of alkaline mafic magmas. contrib. Mineral. petrol., 108, 175-180.

23. Garfunkel Z., Katz A. (1967) New magmatic features in Makhtesh Ramon, southern Israel. Geol. Mag., 104, 608-629.

24. GeguzinYa.E. (1987) Zhivoi kristall [Living crystal]. Moscow, Nauka Publ., 192 p. (In Russian)

25. Goryainov P.M., Ivanyuk E.G. (2010) Energetic percolation, as a reason of self-organization of lithospheric complexes.“Problemy geologii poleznykh iskopaemykh i metallogenii”. Mezhdunar. konf. [“Problems of geology of ore deposits and metallogeny”. International conference]. Moscow, 205. (In Russian)

26. Grapes R.H., Keller J. (2010) Fe 2+ -dominant rhönite in undersaturated alkaline basaltic rocks, Kaisershuhl volcanic complex, Upper Rhine Graben, SW Germany. Eur. J. Mineral., 22, 285-292.

27. Irving A.J., Frey F.A. (1984) Trace element abundance in megacrysts and their host basalts: constraints on partition coefficients and megacrysts genesis. Geochim. cosmochim. acta, 48, 1201-1221.

28. Johnston A.D., Stout J.H. (1984) Compositional variation of naturally occurring rhönite. amer. Mineral., 70, 1211-1216.

29. Kennedy D., Wasserburg G., Heard H., Newton R. (1962) The upper three-phase region in the system SiO 2 –H 2 O. amer. J. sci., 260, 501-521.

30. Kogarko L., Kurat G., Ntaflos T. (2001) Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil. contrib. Mineral. petrol., 140, 577-587.

31. Kowabata H., Hanui T., Chang Q., Kimura J-I., Nichols A.R.L., Tatsumi Y. (2011) The petrology and geochemistry of Saint Helena alkali basalt: evaluation of the oceanic crust-recycling model of HIMU OIB. J. petrol., 52, 791-838.

32. Kuo L.C., Kirpatrick R.J. (1985) Dissolution of mafic minerals and its implications for the ascent velocities of peridotite-bearing basaltic magmas. J. Geol., 93, 691-700.

33. Kutolin V.A., Agafonov L.V., Chepurov A.I. (1976) Relative stability of olivine, pyroxenes, and garnet in basaltic magma and composition of the upper crust. Dokl. akad. Nauk, 321(5), 1218-1221. (In Russian)

34. Kyle P., Price R. (1975) Occurrences of rhönite in alkali lavas of the McMurdo volcanic group, Antarctica, and Dunedin volcano, New Zealand. amer. Mineral., 60, 722-728.

35. Lang B., Hebeda E., Priem H., Steinitz G., Verdumen E. (1988) K-Ar and Rb-Sr Ages of Early Cretaceous Magmatic Rocks from Makhtesh Ramon, Southern Israel. Israel J. Earth sci., 37, 65-72.

36. Lopez M., Pompilio M., Rotolo S.R. (2006) Petrology of some amphibole-bearing volcanics of pre-Ellitico period (102 – 80 ka), Mt. Etna. Periodico di Mineralogia, 75, 151-166.

37. Messiga B., Bettini E. (1990) Reaction behavior during kelyphite and symplectite formation: a case study of mafic granulites and eclogites from the Bohemian massif. Eur. J. Mineral., 2, 125-144.

38. Miller C., Zanetti A., Thoni M., Konzett J., Klotzli U. (2012) Mafic and silica-rich glasses in mantle xenoliths from Wau-en-Namus, Libya: textural and geochemical evidence for peridotite-melt reactions. lithos, 128-131, 11-26.

39. Miyashiro A. (1976). Metamorfizm i metamorficheskie poyasa [Metamorphism and metamorphic belts]. Moscow, Mir Publ., 535 p. (In Russian)

40. Nelson S.T., Montana A. (1992) Sieve-textures plagioclase in volcanic rocks produced by rapid decompression. amer. Mineral., 77, 1242-1249.

41. Nielson J., Nakata J. (1994) Mantle origin and flow sorting of megacryst – xenolith inclusion in mafic dikes of Black Canyon, Arizona. us Geol. surv. prof. paper, 1541, 41 p.

42. Ostrovskii N.Yu., Mishina G.P., Povilaitis V.M. (1959) p-T projection of SiO 2 –H 2 O system. Dokl. Akad. Nauk SSSR, 126(3), 645-646. (In Russian)

43. Rankenburg K., Lassiter J., Brey G. (2004) Origin of megacrysts in volcanic rocks of the Cameron vole: chainconstrains on magma genesis and crustal contamination. contrib. Mineral. petrol., 147, 129-144.

44. Ribbe P. (1960) An X-ray and optical investigation of the peristerite plagioclases. amer. Mineral., 45, 626-644.

45. Righter K., Carmichael I.S.E. (1993) Mega-xenocrysts in oli vine basalts: fragments of disrupted mantle assemblages. amer. Mineral., 78, 1230-1245.

46. Ringwood A.E. (1975) Origin and petrology of the Earth’s mantle. McGraw-Hill, 618 p.

47. Samoilov V., Vapnik Ye. (2007) Fractional melting – the determining factor in the origin of thephrite-basanitenephelinite rock suite: evidence from western Makhtesh Ramon, Israel. N. Jb. Mineral. abh., 184(2), 181-195.

48. Sharygin V.V., Kotai K., Sabo Ch., Timina T.Ju., Terek K., Vapnik Ye., Kuz’min D.V. (2011) Rhönite in alkaline basalts: silicate melt inclusions in olivine phenocrysts. Geol. Geofiz., 52(11), 1695-1717. (In Russian)

49. Shaw C.S.J. (1999) Dissolution of clinopyroxene in basanite magma between 0.4 and 0.2 GPa: further implications for the origin Si-rich alkaline glass inclusions in mantle xenoliths. contrib. Mineral. petrol., 135, 114-132.

50. Shaw S.J.S., Eyzaguirre J. (2000) Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany. lithos, 50, 75-95.

51. Shaw S.J.S., Thibault Y., Edgar A.D., Lloyd F.E. (1998) Mechanism of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. contrib. Mineral. petrol., 132, 354-370.

52. Shubnikov A.V. (1935) Kak rastut kristally [How crystals grow]. Moscow; Leningrad, Academy of Sciences of the USSR Publ., 174 p. (In Russian)

53. Shulze D. (1987) Megacrysts from alkali volcanic rocks. Mantle xenoliths (ed. P.H. Nixon), 443-451.

54. Snelling A.A. (2007) Rapid ascent of basalts magmas. acts and Facts, 36, 10.

55. Stein M., Katz A. (1989) Composition of the subcontinental lithosphere beneath Israel: Inferences from peridotitic xenoliths. Israel J. Earth sci., 38, 75-87.

56. Tsuchiyama A. (1985) Dissolution kinetics of plagioclase in the melt of the system diopside–albite–anorthite, and origin of crusty plagioclase in andesites. contrib. Mineral. petrol., 89, 1-19.

57. Tsuchiyama A. (1986) melting and dissolution kinetics: application to partial melting and dissolution of xenoliths. J. Geophys. Res., 91(B9), 9395-9406.

58. Upton B.G.J., Finch A.A., Słaby E. (2009) Megacrysts and salic xenoliths in Scottish alkali basalt derivatives of deep crustal and small-melt fractions from upper mantle. Miner. Mag., 73, 943-956.

59. Vapnik Y. (2005) Melt and fluid inclusions and thermobarometry of mantle xenoliths in Makhtesh Ramon, Israel. Israel J. Earth sci., 54, 15-28.

60. Vapnik Y., Sharygin V., Samoilov V., Yudalevich Z. (2007) The petrogenesis of basic and ultrabasic alkaline rocks of western Makhtesh Ramon, Israel: melt and fluid inclusion study. inter. J. Earth sci., 96, 663-684.

61. Villaseca C., Ancochea E., Orejana D., Jeffries T.E. (2010) Composition and evolution of the lithospheric mantle in Central Spain: inferences from peridotite xenoliths from the Cenozoic Calatrava volcanic field. Petrological evolution of the European lithospheric mantle (Eds M. Coltorti, H. Downes, M. Grégoire, S.Y. O’Reilly). Geol. Soc., London, Spec. Publ., 337, 125-151.

62. Wang Y., Han B., Griffin W.L., Zhang L., Shu G. (2012) Post-entrainment mineral – magma interaction in mantle xenoliths from Inner Mongolia, Western North China craton. J. Earth sci., 23, 54-76.

63. Wilkinson J.F.G. (1975) Ultramafic inclusions and high pressure megacrysts from a nephelinite sill Nandewar Mountains, New Wales, and their bearing on the origin of certain ultramafic inclusions in alkali volcanic rocks. contrib. Mineral. petrol., 51, 235-262.

64. Yudalevich Z.A., Fershtater G.B., Eyal M. (2014) Magmatism of Makhtesh Ramon: geology, geochemistry, petrogenesis (natural reserve of Har Ha-Negev, Israel). litosfera, 3, 70-92. (In Russian)


Для цитирования:

Yudalevich Z., Vapnik Y. Xenocrysts and megacrysts of alkaline olivine-basalt-basanite-nephelinite association Makhtesh Ramon (Israel): interaction with carrier magmas and crystallographic transformations. Литосфера. 2018;18(5A):57-77.

For citation:

Yudalevich Z., Vapnik Y. Xenocrysts and megacrysts of alkaline olivine-basalt-basanite-nephelinite association Makhtesh Ramon (Israel): interaction with carrier magmas and crystallographic transformations. LITHOSPHERE (Russia). 2018;18(5A):57-77.

Просмотров: 142

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)