Preview

Литосфера

Расширенный поиск

Plume-related granite-rhyolite magmatism

Полный текст:

Аннотация

Plume-related magmatism is widespread and its existence is well-founded. Mostly, plume-related magmatism is represented by trap rocks, oceanic island basalts (OIB) and oceanic plateau basalts (OPB), although the composition of plume-related igneous products is very diverse. Among others, silicic igneous rocks – rhyolites and granites – play a prominent role. Two main types of plume magmatism are recognised. The former comprises Large Igneous Provinces (LIP) and is thought to be born at the core-mantle boundary within structures called superswells, which produce giant, short-lived mantle upwellings resulting in abundant magmatism on the earth’s surface. The latter is represented by time-progressive linear volcanic chains formed by single plumes – thin upward mantle flows being continuously active during longer periods of time. It is shown that the relative volume of silicic magmatism strongly depends on the type of the earth’s crust. Among continental trap basalts, silicic magmatism is usually present, being subordinate to the basalts in volume, and belongs to the bimodal type. However, in some cases, continental LIPs are formed predominantly by silicic rocks (silicic LIPS, or SLIPS). Oceanic LIPs are mainly basaltic comprising an insignificant or no amount of silicic rocks. Time-progressive volcanic chains are rarely found on the continents and, as a rule, include a significant silicic component. Oceanic chains are comprised mostly of basalts (OIB), although at the top of volcanoes there are more acid and alkaline differentiates, which, howe ver, usually lack rhyolites and granites, except for the cases when the relics of the continental crust or anomalously thick mafic crust are present. The analysis suggests that the melting of continental crust plays an important role in the formation of plume-related rhyolite-granite magmatism. As for the Urals, the presence of plume-related magmatism in its history has been pro ven relatively recently. Plume events characterised by the presence of (rhyolite)-granite components include mashak (1380–1385 Ma), Igonino (707–732 Ma), Mankhambo (mainly Cambrian), Ordovician Kidryasovo, Stepninsky (Permian) and Urals-Siberian (Triassic).

Об авторе

V. N. Puchkov
Institute of Geology, Ufa Federal Research Centre, RAS; Zavaritsky Institute of Geology and Geochemistry, UB RAS
Россия

Viktor N. Puchkov

16/2 K. Marx St., Ufa 450077; 15 Akad. Vonsovsky St., Ekaterinburg 620016



Список литературы

1. Ariskin A.A. (2017) Magmaticheskie formatsii geodinamicheskikh obstanovok. Kurs lektsii [The Course of lektures: Magmatic formations of geodynamiс situations]. Lectures 15, 16a, 16b. URL: http://www.planetology.ru/lectures/ariskin/?language=russian. (In Russian)

2. Bowden P., Kinnaird J.A. (1984) The petrology and geochemistry of alkaline granites from Nigeria. phys. Earth planet. interiors, 35, 199-211.

3. Bryan S.E., Ernst R.E. (2008) Revised definition of Large Igneus proviunsces (LIPs) Earth Sci. Rev., 86, 175-200.

4. Bryan S., Ferrari L. (2013) Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. Geol. soc. amer. Bull., 125, 1053-1058.

5. Ernst R. (2014) Large Igneous Provinces. L.: Cambridge University Press, 653 p.

6. Ernst R.E., Pease V., Puchkov V.N., Kozlov V.I., Sergeeva N.D., Hamilton M. (2006) Geochemical Characterization of Precambrian magmatic suites of the southeastern margin of the East European Craton, Southern Urals, Russia . Geological Digest. Geol. Institute of the Ufimian scientific centre of RAS, (5).

7. Fershtater G.B. (2013) Paleozoiskii intruzivnyi magmatizm Srednego I Yuzhnogo Urala [Paleozoic intrusive magmatism of the Middle and Southern Urals]. Ekaterinburg, UrO RAS Publ., 365 p. (In Russian)

8. Ivanov K.S., Fedorov Yu.N., Erokhin Yu.V., Ponomarev V.S. (2016) Geologicheskoe stroenie fundamenta Priuralskoi chasti Zapadno-Sibirskogo neftegazonosnogo megabasseina [Geological structure of the basement of Cis-Uralian part of the West-Siberian oil and gas mega basin]. Ekaterinburg, IGG UrO RAS Publ., 302 p. (In Russian)

9. Khodorevskaya L.I. (2017) Influence of fluid regime on the melting of rocks of oceanic crust (experimental data) at 900–1000°C, 5–10 kbar. Granity i evolutsia Zemli man tiya I kora v granitoobrazovanii [Granites and the Earth’s Evolution: the Mantle and the Сrust in Granite Origin]. Proc. 3rd Int. geol. conf. Ekaterinburg, 341-343. (In Russian)

10. Kholodnov V.V., Fershtater G.B., Shagalov E.S., Shardakova G.Yu. (2017) The Riphean magmatizm and ore formation, before the opening of the Uralian Paleoocean (the western slope of the Southern Urals). litosfera, 17(2), 5-26. (In Russian)

11. Kinnaird J.A., Nex P.A.M., Milani L. (2016) Tin in Africa. Episodes, 39(2), 361-380.

12. Kovalev S.G., Vysotsky S.I., Kovalev S.S. (2018а) Model formirovaniya magmaticheskikh porod Shatakskogo kompleksa [model of the origin of magmatic rocks of the Shatak complex]. Geol. Vestn., 1(2). In print. (In Russian)

13. Kovalev S.G., Puchkov V.N., Vysotsky S.I., Kovalev S.S. (2018б) Finds of “ancient” zircons in igneous rocks of the Shatak complex (Southern Urals) and their petrogenetic consequences.. Dokl. aN. In print. (In Russian)

14. Kozlov V.I., Puchkov V.N., Krasnobaev A.A., Nekhorosheva A.G., Busharina S.V. (2011) Arshinian – a new straton of the Riphean in the stratotypical sections of the Southern Urals. Geol. Sbornik IG USC RAS, 9, 3-8. (In Russian)

15. Krasnobaev A.A., Kozlov V.I., Puchkov V.N., Busharina S.V., Sergeeva N.D., Paderin I.P. (2013а). Zircon geochronology of the mashak volcanics and the problem of an age of the boundary between the Lower and Middle Riphean (Southern Urals). Stratigr. Geol. Korrel., 21(5), 3-20. (In Russian)

16. Krasnobaev A.A., Kozlov V.I., Puchkov V.N., Larionov A.N., Nekhorosheva A.G., Berezhnaya N.G. (2007б). On the age of Barangulovo gabbro-granite complex, Southern Urals. Geol. sbornik IG USC RAS, 6, 7-16. (In Russian)

17. Krasnobaev A.A., Kozlov V.I., Puchkov V.N., Rodionov N.V., Nekhorosheva A.G., Kiseeva K.N. (2007a). Akhmerovo massif – a representative of mesoproterozoic intrusive magmatism in the Southern Urals. Dokl. akad. Nauk, 418(2), 241-246. (In Russian)

18. Krasnobaev A.A., Puchkov V.N., Sergeeva N.D. (2013б) Zirconology of the Kiryabinsky pyroxenite-gabbro complex (Southern Urals). Dokl. akad. Nauk, 450(2), 204-208. (In Russian)

19. Krasnobaev A.A., Puchkov V.N., Sergeeva N.D. (2018) Polychronous zirkonology of the Navysh volcanics of the Ai Formation. Dokl. akad. Nauk, 478(1), 74-80. (In Russian)

20. Krasnobaev A.A., Kozlov V.I., Puchkov V.N., Sergeeva B.D., Busharina S.V. (2012) New data on the zircon geochronology of the Arshinian volcanics (Southern Urals)]. litosfera, 4, 127-140. (In Russian)

21. Krasnobaev A.A., Puchkov V.N., Sergeeva N.D., Busharina S.V. (2017) Mineralogy, U-Pb (TIMS, SHRIMP) age and REE in zircons of granites of the Mazara massif (Southern Urals). Geokhimiya, 6, 497-512. (In Russian)

22. Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Gertseva M.V., Andreichev V.L., Dorokhov N.S. (2007) Preuralian tectonic evolution of the north-eastern and eastern frame of the East European platform. Р. 2. litosfera, (4), 32-45. (In Russian)

23. Larin A.m. (2011) Granity rapakivi i assotsiiruyushchie porody [Rapakiwi-granites and associated rocks]. St.Petersburg, Nauka Publ., 402 p. (In Russian)

24. Makhlaev L.V. (1998) On what depends the mineral composition of granites. soros educational J., 11, 120-125. (In Russian)

25. Maslov A.V., Kovalev S.G., Puchkov V.N., Sergeeva N.D. (2018) Arshinian series of the Riphean of the Southern Urals: on the question of geodynamic nature of the rock associations. Dokl. akad. Nauk, 480(1), 1-5. (In Russian)

26. Mazarovich A.O. (2000) Geologicheskoe stroenie Tsentralnoi Atlantiki: razlomy, vulkanicheskie sooruzheniya i deformatsii okeanskogo dna [Geological structure of the Central Atlantica: faults, volcanic edifivesand deformations of oceanic floor]. Moscow, Nauchnyi Mir Publ., 176 p. (In Russian)

27. North Atlantic Igneous Province: Stratigraphy, Tectonic, Volcanic and Magmatic Processes. (2002) (Eds D.W. Jol ley, B.R. Bell). Geol. society, london, special publ., 197, 1-13.

28. Petrov G.A., Maslov A.V., Ronkin Yu.L. (2005) Pre-Paleozoic magmatic complexes of the Kvarkush-Kamennogorsk anticlinorium (Middle Urals): new data on geochemistry and geodynamics. litosfera, (4), 42-69. (In Russian)

29. Popov V.S., Bogatov V.I., Petrova A.Yu., Belyatski B.V. (2003) Age and probable sources of granites of the murzinsk-Aduj block, Srednij Urals. litosfera, 4, 3-18. (In Russian)

30. Puchkov V.N. (1975) Strukturnye svyazi Pripolyarnogo Urala i Russkoi platformy [Sructural connections of Pre-Polar Urals and Russian Platform]. Leningrad, Nauka Publ., 202 p. (In Russian)

31. Puchkov V. (1979) Batialnye kompleksy passivnykh okrain geosynklinalnykh oblastei [Bathyal complexes of passive margins of geosynclines]. Moscow, Nauka Publ., 260 p. (In Russian)

32. Puchkov V. (2002) Paleozoic evolution of the East European continental margin involved into the Urals. Mountain Building in the Uralides: Pangea to the Present (Eds D. Brown, C. Juhlin, V. Puchkov). aGu Geophysical Monograph Series, 132, 9-32.

33. Puchkov V.N. (2010) Geologiya Urala i Priuralya (aktualnye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) [Geology of the Urals and Cis-Urals (actual topics of stratigraphy, tectonics, geodynamics and metallogeny]. Ufa, DizainPoligrafServis Publ., 280 p. (In Russian)

34. Puchkov V.N. (2016) Relationships of plate-tectonic and plume processes. Geotektonika, 4, 88-104. (In Russian)

35. Puchkov V.N. (2018a) Relationships of plate-tectonic and plume processes in the Urals. Materialy l Tektonicheskogo soveschaniya. T. 2 [materials of the L-th Tectonic Meeting. V. 2]. Moscow, GEOS Publ., 124-127. (In Russian)

36. Puchkov V.N. (2018б) Plumes – a new word in the geology of the Urals. litosfera, 18(4), 483-499. (In Russian)

37. Puchkov V.N., Bogdanova S.V., Ernst R., Kozlov V.I., Krasnobaev A.A., Söderlund U., Wingate M.T.D., Postni kov F.V., Sergeeva N.D. (2013) The ca. 1380 Ma mashak igneous event of the Southern Urals. lithos, 174, 109-124.

38. Puchkov V.N., Ernst R.E., Hamilton M.A., Söderlund U., Sergeeva N. (2016) A Devonian >2000 km long dolerite swarm belt and associated basalts along the Urals-Novozemelian fold-belt: part of an East-European (Baltica) LIP tracing the Tuzo Superswell. GFF J., 138(1), 6-16.

39. Puchkov V.N., Krasnobaev A.A., Sergeeva N.D., Busharina S.V., Shokalsky S.P. (2017) Zircons, Age, and Geological Setting of Rhyodacite-Porphyry from the Bagrusha Complex (South Urals). Earth sci., 477(1), 1295-1300.

40. Puchkov V.N., Rapoport M.S., Fershtater G.B., Ananyeva E.M. (1986) Tectonic control of the Paleozoic granitoid magmatism on the eastern slope of the Urals. issledovaniya po petrologii i metallogenii Urala [Studies on petrology and metallogeny of the Urals]. Sverdlovsk, IGG UNTz AN SSSR Publ., 85-95. (In Russian)

41. Rohde J.K., Bogaard P. van den, Hoernle K., Hauff F., Werner R. (2013) Evidence for an age progression along the Tristan-Gough volcanic track from new 40 Ar/ 39 Ar ages on phenocryst phases. Tectonophysics, 604, 60-71.

42. Ronkin Yu.L. (2017) Isotope geology of rapakiwi granites and related rocks of the Southern Urals: Rb-Sr, Sm-Nd, Lu-Hf AND U-Pb constraints. Granites and the Earth’s Evolution: the Mantle and the Сrust in Granite Origin. Proc. 3rd Int. geol. conf. Ekaterinburg, IGG UB RAS Publ., 239-241.

43. Salikhov D.N., Moseychuk V.M., Puchkov V.N. (2013) On the age of alkaline granitoids of the magnitogorsk gabbro-granite series. litosfera, (5), 165-171.

44. Shardakova G.Yu. (2016) Geochemical features and isoto pic age of the granitoids of the Bashkirian meganticlinorium – the evidence of pulses of endogenic activity in the junction zone of the Uralian orogeny and the East European platform. Geokhimiya, (7), 607-622. (In Russian)

45. Shardakova G.Yu. (2017) Vendian-Сambrian granitoids of the western slope of the Urals: features of the composition, geodynamic settings, sources, problems. Granites and the Earth’s Evolution: the Mantle and the Сrust in Granite Origin. Proc. 3rd Int. geol. conf. Ekaterinburg, IGG UB RAS Publ., 341-343.

46. Shardakova G.Yu., Saveliev V.P., Puzhakov B.A., Реtrov V.I. (2015) New data on the chemical composition and age of the rocks of Kozlinogorsk complex. Ezhegodnik-2014, Proc. IGG UrO RAS, 162, 148-154. (In Russian)

47. Shuyskiy A.S., Udoratina O.V., Meng Fancong, Geng Jianzhen (2017) Riftogenic A-type granites of the Polar Urals: new data problems. Granites and the Earth’s Evolution: the Mantle and the Сrust in Granite Origin. Proc. 3rd Int. geol. conf. Ekaterinburg, 361-363.

48. Simakov G.V. (1972) Intrusive rocks at the headwater of the Pechora River, the North Urals. Trudy VII Geologicheskoi konferentsii Komi ASSR [Proc. VII geol. conf. Komi ASSR]. Syktyvkar, Komi Branch, Academy of Sciences USSR, 121-123. (In Russian).

49. Smith R.B., Jordan M., Steinberger B., Puskas C.M. Farrel J., Waite G.P., Husen S., Wulung Chang, O’Conner R. (2009) Geodynamics of the Yellowstone hotspot and mantle plume: seismic and GPS imaging, kinematics, and mantle flow. J. Volcanol. Geotherm. Res., 188, 26-56.

50. Snachev A.V., Puchkov V.N., Snachev V.I., Romanovskaya m.A. (2018) Petrogeochemical features and con-ditions of crystallization of monzodiorite-granite massifs of the Plast area. Vestn. MGu, ser. Geol. In print. (In Russian)

51. Soboleva A.A., Yudovich Ya.E., Ketris M.P., Vasiliev A.V. (2010) The green schists of the Lemva zone. Vestn. iG KNC RAS, 1, 14-20. (In Russian)

52. Tevelev Al.V., Kosheleva I.A., Khotylev A.O., Prudnikov I.A., Tevelev Ark.V. (2015) The Data on the Composition and Age of the Kozlinogorsk Gabbro-Alkaline Granite Complex on the Western Slope of the Southern Urals. Moscow University Geol. Bull., 70(4), 338-349.

53. Tevelev Al.V., Kosheleva I.A., Furina M.A., Belyatskij B.V. (2009) Triassic magmatism of the middle and Southern Urals: geochemistry, izotopiс geology, geodynamics. Vestn. MGu, ser. Geol., 2, 29-38. (In Russian)

54. Udoratina O.V., Andreichev V.L., Kapitanova V.A., Coble M.A., Geng J.Z. (2017) Granites of Mankhambo and Ilyaiz massifs and rare metal rocks of Mankhambo massif (Northern Urals). Granites and the Earth’s Evolution: the Mantle and the Сrust in Granite Origin. Proc. 3rd Int. geol. conf. Ekaterinburg, 300-303.

55. Vernikovsky V.A., PeaseV.I., Vernikovskaya A.E., Romanov A.P., Travin A.V. (2003) First report of Early Triassic A-type granite and syenite intrusions from Taymyr: product of the northern Eurasian superplume. lithos, 66, 23-36.

56. Yarmolyuk V.V., Kuzmin M.I., Ernst R.E. (2014) Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. J. asian Earth sci., 93, 158-179.


Для цитирования:


Puchkov V.N. Plume-related granite-rhyolite magmatism. Литосфера. 2018;18(5A):37-47.

For citation:


Puchkov V.N. Plume-related granite-rhyolite magmatism. LITHOSPHERE (Russia). 2018;18(5A):37-47.

Просмотров: 17


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)