Murzinka massif in the Middle Urals as an example of an interformational granite pluton: magmatic sources, geochemical zonation, peculiarities of formation
Аннотация
Murzinka massif constitutes an interformational sheet-like body reaching up 6 km in length steeply dipping to the east. Proterozoic metamorphic rocks of predominantly granulite facies (p = 5–6 kbar, T = 750–800℃) occur at the base of the massif, with Silurian-Devonian volcanic-sedimentary rocks metamorphosed in the epidote-amphibolite facies occurring in its roof. The petrogenic elements were determined at the Laboratory for Physicochemical Research Methods of the Zava ritsky Institute of Geology and Geochemistry, UB RAS. The content of trace elements was determined at the laboratories of the University of Granada in Spain and at the Institute of Geology and Geochemistry using the ICP-MS method. In the eastern direction, the rocks change their composition from predominantly basic to granitoid as they approach the massif. The gneisses of the granitoid composition experienced a high degree of melting; the anatectic melt formed the western part of the Murzinka massif. The granites form three complexes: 1) Yuzhakovo – veins of biotite orthoclase antiperthite gra nites varying in K2O content in the metamorphic rocks of the base of the massif; 2) Vatikha – biotite orthoclase antiperthite granites making up the western part of the murzinka massif; 3) Murzinka – two-mica predominantly microcline granites occurring in the eastern part of the massif. Vatikha and Murzinka granites have the same isotopic age (about 255 Ma). A clear geochemical zonation is revealed in the massif: from west to east (from the base to the roof), the contents of Rb, Li, Nb, Ta increase in the granites of the Vatikha and Murzinka complexes. In the same direction, the ratios K/Rb, Zr/Hf, Nb/Ta decrease, as well as the contents of Ba and Sr. Naturally, the compositions of such rock-forming minerals as plagioclase and biotite also change. The isotopic characteristics of the granites of the Vatikha (Sri = 0.70868–0.70923 and εNd255 from –8.9 to –11.9) and Murzinka (Sri = 0.70419–0.70549, εNd255 from –2.6 to +2.3) complexes suggest that the substratum of the former was represented by Proterozoic granite-gneisses, whereas the rocks of the newly formed crust, possibly similar to the Silurian-Devonian volcanogenic-sedimentary rocks, which are at contact with the Murzinka granites, served as the substrate for the latter.
Ключевые слова
Об авторах
G. B. FershtaterРоссия
German B. Fershtater
15 Akad. Vonsovsky St., Ekaterinburg, 620016
N. S. Borodina
Россия
Nadezhda S. Borodina
15 Akad. Vonsovsky St., Ekaterinburg, 620016
Список литературы
1. Borshchov S.K., Fershtater G.B. (2017) The self-colored belt of the Urals: Alabash ore field, vein Mokrusha. putevoditel’ sredneural’skoi polevoi ekskursii. “Granity i evolyutsiya Zemli”. III Mezhdunar. geol. konf. [Guide of Sredneuralskaya field trip. III Intern. Geol. Conf. “Granites and the evolution of the Earth”]. Ekaterinburg, IGG UrO RAN Publ., 27-37. (In Russian)
2. Clemens J.D., Mawer C.K. (1992) Granite magma transport by fracture propagation. Tectonophysics, 204(3-4). 331-360.
3. Couzinie S., Moyen J.-F., Villaros A.,Paquette J.-L., Scarrow J.H., Marignac C. (2014) Temporal relatioships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France). J. Geosci., 59, 69-86.
4. Fershtater G.B. (1987) Petrologiya glavnykh intruzivnykh assotsiatsii [Petrology of the main intrusive associations]. Moscow, Nauka Publ., 232 p. (In Russian)
5. Fershtater G.B. (1990) Empirical plagioclase-hornblende barometer. Geokhimiya, (3), 328-335.
6. Fershtater G.B. (2013) Paleozoiskii intruzivnyi magmatizm Srednego i Yuzhnogo Urala [Paleozoic intrusive magmatism of the Middle and Southern Urals]. Ekaterinburg, UrO RAN Publ., 365 p. (In Russian)
7. Fershtater G.B., Borodina N.S. (1975) Petrologiya magmaticheskikh granitoidov [Petrology of magmatic granitoids]. Moscow, Nauka Publ., 287 p. (In Russian)
8. Fersman A.E. (1940) Pegmatity [Pegmatites]. Moscow, AN SSSR Publ., 712 p. (In Russian)
9. Gerdes A., Montero P., Bea F., Fershtater G., Borodina N., Osipova T., Shardakova G. (2002) Peraluminous grani tes frequently with mantle-like isotope compositions: the continental-type Murzinka and Dzhabyk batholith of the eastern Urals. Intern. J. Earth Sci. (Geol. Rundsch.), 91, 3-19.
10. Holtz F., Becker A., Freise M., Johannes W. (2001) The water-saturated and dry Qz–Ab–Or system revised. Experimental results of very low water activities and geological implications. contrib. Mineral. petrtol., 141, 347-357.
11. Huang W.L., Willie R.J. (1973) Melting relations of muscovite granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. contrib. Mineral. petrtol., 42, 1-14.
12. Johannes W., Holtz F. (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin, Heidelberg, New York., 336 p.
13. Keil’man G.A. (1974) Migmatitovye kompleksy podvizhnykh poyasov [Migmatitic complexes of mobile belts]. Moscow, Nedra Publ., 200 p. (In Russian)
14. Korovko A.V., Dvoeglazov D.A. (1986) Geological position and internal structure of the Murzinka metamorphic complex. Korrelyatsiya i kartirovanie magmaticheskikh i me tamorficheskikh kompleksov Urala [Correlation and mapping of magmatic and metamorphic complexes of the Urals]. Sverdlovsk, IGG UrO RAN Publ.,73-75. (In Russian)
15. Krasnobaev A.A., Bea F., Fershtater G.B., Montero P. (2005) Zircon geochronology of the murzinka metamorphic complex (Middle Urals). Dokl. akad. Nauk., 404(3), 407-410. (In Russian)
16. Le Maitre R.W. (ed.). (1989) A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 193 pp.
17. Levin V.Ya., Koroteev V.A, Zvonareva G.K. (1975) Corundum syenites from Yubileynaya mine. Materialy k minera logii Urala [materials to the mineralogy of the Urals]. Tr. Ilmensk. gos. zapovednik, 44-49. (In Russian)
18. Molina J. F., Moreno J.A., Castro A., Rodriguez, Fershtater G.B. (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. lithos., 232, 286-305.
19. Montero P., Bea F., Gerdes A., Fershtater G.B., Osipova T.A., Borodina N.S., Zinkova E.A. ( 2000) Singlezircon evaporation ages and Rb-Sr dating of four major Variscan batholiths of the Urals. A perspective on the timing of deformation and granite generation Tectonophysics, 317, 93-108.
20. Muller A., Romer R.L., Pedersen R.-B. (2017) The sveconorvegian pegmatite province – thousands of pegmatites without parental granites. canad. Mineral., 55, 283-315.
21. Orogennyi granitoidnyi magmatizm Urala [Orogenic granitoid magmatism of the Urals]. (Ed. G.B. Fershteter). (1994) Miass, IGG UrO RAN Publ., 250 p. (In Russian)
22. Petford N., Kerr C.R., Lister R.G. (1993) Dike transport of granitoid magmas. Geology, 21, 845-848.
23. Popov V.A., Popova V.I. (1975) To the mechanism for the formation of feldspar glasses around corundum crystals, “Yubileynaya” mine in the Ilmeny mountains Materialy k mineralogii Urala [materials to the mineralogy of the Urals]. Тr. Ilmensk. gos. zapovednik, 50-57. (In Russian)
24. Ribbe P.H. (1975) Feldspar mineralogy: short course notes. (Ed. P.H. Ribbe). Blacksburg, Amer. Miner. Soc. Southern print. Co., 2, 1-52.
25. Sabatier H. (1980) Vaugnerites and granites, a peculiar association of basic and acid rocks. Bull. Mineral., 103, 507-522.
26. Sabatier H. (1991) Vaugnerites: special lamprophyre-derived mafic enclaves in some Hercynian granites from Western and Central Europe. Enclaves and granite petrology. (Еds J. Didier, B. Barbarin). Elsevier, Amsterdam, 63-81.
27. Scarrow J.H., Molina J., Bea F., Montero P. (2009) Wi thinplate calc-alkaline rocks: insights from alkaline mafic magmas – peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. lithos., 110, 50-64.
28. Shteinberg D.S. ( 1985) O classifikatsii magmatitov [On the classification of magmatites]. Moscow, Nauka Publ., 159 p. (In Russian).
29. Talantsev A.S. (1988) Kamernye pegmatity Urala [Chamber pegmatites of the Urals]. Moscow, Nauka Publ., 144 p. (In Russian)
30. Winchester J.A., Floyd P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. chem. Geol., 20, 325-343.
Рецензия
Для цитирования:
Fershtater G.B., Borodina N.S. Murzinka massif in the Middle Urals as an example of an interformational granite pluton: magmatic sources, geochemical zonation, peculiarities of formation. Литосфера. 2018;18(5A):20-36.
For citation:
Fershtater G.B., Borodina N.S. Murzinka massif in the Middle Urals as an example of an interformational granite pluton: magmatic sources, geochemical zonation, peculiarities of formation. LITHOSPHERE (Russia). 2018;18(5A):20-36.