Preview

Литосфера

Расширенный поиск

Реконструкция состава пород питающих провинций. Статья 3. Современные методы исследования тяжелых обломочных минералов (гранатов, турмалинов, хромшпинелидов, рутила и др.)

https://doi.org/10.24930/1681-9004-2020-20-2-149-167

Полный текст:

Аннотация

Объект исследований. Акцессорные минералы, присутствующие, в отличие от цирконов, в подавляющем большинстве обычных обломочных пород. Материалы и методы. В качестве материала, иллюстрирующего особенности применения различных методов и приемов, использованы данные о химическом составе минералов (гранатов, турмалинов, хромшпинелидов, рутила, хлоритоидов, клинопироксенов), выделенных из песчаников рифея и венда, а также верхней перми и нижнего триаса Южного Урала. Привлечены также многочисленные литературные примеры и данные. Результаты. Дается обзор ряда современных методов изучения различных акцессорных минералов, которые позволяют существенно уточнить состав и особенности пород источников сноса для терригенных толщ. Заключение. Показана возможность использования ряда акцессорных минералов, имеющих наряду с цирконами значительный потенциал для получения важных данных о материнских породах.

Об авторах

Л. В. Бадида
Институт геологии и геохимии УрО РАН
Россия


А. В. Маслов
Институт геологии и геохимии УрО РАН; Институт геологии Уфимского федерального исследовательского центра РАН
Россия


Г. А. Мизенс
Институт геологии и геохимии УрО РАН
Россия


Список литературы

1. Литогеохимия терригенных ассоциаций южных впадин Предуральского прогиба. (2015) (Отв. ред. А.В. Маслов). Екатеринбург: ИГГ УрО РАН, 308 с.

2. Малиновский А.И., Маркевич В.П., Тучкова М.И. (2006) Тяжелые обломочные минералы терригенных пород как индикаторы геодинамических обстановок в палеобассейнах орогенных областей востока Азии. Вестн. КРАУНЦ. Науки о Земле, (2), 97-111.

3. Маслов А.В., Мельничук О.Ю., Мизенс Г.А., Титов Ю.В. (2019) Реконструкция состава пород питающих провинций. Статья 1. Минералого-петрографические подходы и методы. Литосфера, 19(6), 834-860. DOI: 10.24930/1681-9004-2019-19-6-834-860.

4. Маслов А.В., Мельничук О.Ю., Мизенс Г.А., Титов Ю.В., Червяковская М.В. (2020) Реконструкция состава пород питающих провинций. Статья 2. Лито- и изотопно-геохимические подходы и методы. Литосфера, 20(1), 40-62. DOI: 10.24930/1681-9004-2020-20-1-40-62.

5. Мизенс Г.А., Маслов А.В., Бадида Л.В., Вовна Г.М., Киселев В.И., Ронкин Ю.Л., Хиллер В.В. (2015) Моласса Бельской впадины Предуральского прогиба: современный взгляд на источники сноса. Докл. АН, 465(4), 460-463. DOI: 10.7868/S0869565215340204.

6. Соболев Н.В. (1964) Парагенетические типы гранатов. М.: Наука, 218 с. Щука С.А., Вржосек А.А. (1983) Ультраосновной вулканизм Тихоокеанского пояса и вопросы систематики меймечитов и коматиитов. Вулканология и сейсмология, (2), 3-15.

7. Allen C.M., Campbell I.H. (2007) Spot dating of detrital rutile by LA-Q-ICP-MS: a powerful provenance tool. GSA Denver Annual Meeting. Abstract, p. 196-12.

8. Andò S., Garzanti E., Padoan M., Limonta M. (2012) Corrosion of heavy minerals during weathering and diagenesis: a catalog for optical analysis. Sediment. Geol., 208, 165- 178. doi: 10.1016/j.sedgeo.2012.03.023.

9. Arai S. (1992) Chemistry of chromian spinel in volcanic rocks a potential guide to magma chemistry. Mineral. Mag., 56(383), 173-184. DOI: https://doi.org/10.1180/minmag.1992.056.383.04.

10. Aubrecht R., Méres Š., Sýkora M., Mikuš T. (2009) Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia). Geologica Carpathica, 60(6), 463-483. doi: 10.2478/v10096-009-0034-z.

11. Avigad D., Morag N., Abbo A., Gerdes A. (2017) Detrital rutile U-Pb perspective on the origin of the great Cambro–Ordovician sandstone of North Gondwana and its linkage to orogeny. Gondwana Res., 51, 17-29. https://doi.org/10.1016/j.gr.2017.07.001.

12. Chopin C. (1983) Magnesiochloritoid, a key-mineral for the petrogenesis of high-grade pelitic blueschists. Bull. Mineral., 106, 715-717. DOI: 10.3406/bulmi.1983.7692.

13. Chopin C., Schreyer W. (1983) Magnesiocarpholite and magnesiochloritoid: two index minerals of pelitic blueschists and their preliminary phase relations in the model system MgO–Al2O3–SiO2–H2O. Am. J. Sci., 283, 72-96.

14. Cookenboo H.O., Bustin R.M., Wilks K.R. (1997) Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance: implications for orogeny in the Canadian cordillera. J. Sediment. Res., 67, 116- 123. https://doi.org/10.1306/D4268509-2B26-11D7-8648000102C1865D.

15. Copjakova R., Sulovsky P., Paterson B.A. (2005) Major and trace elements in pyrope-almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif. Lithos, 82(1-2), 51-70. DOI: https://doi.org/10.1016/j.lithos.2004.12.006.

16. Dick H.J.B, Bullen T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially assosicated lavas. Contrib. Mineral. Petrol., 86, 54-76. https://doi.org/10.1007/BF00373711.

17. Dutrow B.L., Henry D.J. (2011) Tourmaline: a geologic DVD. Elements, 7, 301-306. https://doi.org/10.2113/gselements.7.5.301.

18. Ertl A. (2009) Characterisation of tourmalines from different environments and correlations between structural and chemical data. Dissertation Doktor der Naturwissenschaften (Dr. rer. nat.), University of Vienna. Fakultät für Geowissenschaften, Geographie und Astronomie, 888 p.

19. Farnsworth-Pinkerton S., McMillan N.J., Dutrow B.L., Henry D.J. (2018) Provenance of detrital tourmalines from Proterozoic metasedimentary rocks in the Picuris Mountains, New Mexico, using Laser-Induced Breakdown Spectroscopy. J. Geosci., 63, 193-198. DOI: 10.3190/jgeosci.261.

20. Faupl P., Pavlopoulos A., Klotzli U., Petrakakis K. (2006) On the provenance of mid-Cretaceous turbidites of the Pindos zone (Greece): implications from heavy mineral distribution, detrital zircon ages and chrome spinel chemistry. Geol. Mag., 143(3), 329-342. DOI: https://doi.org/10.1017/S001675680600197X

21. Force E.R. (1980) The provenance of rutile. J. Sediment. Petrol., 50(2), 485-488. https://doi.org/10.1306/212F7A31-2B24-11D7-8648000102C1865D.

22. Garzanti E., Andò S., Vezzoli G. (2008) Settling-equivalence of detrital minerals and grain size dependence of sediment composition. Earth Planet. Sci. Lett., 273, 138- 151. doi: 10.1016/j.epsl.2008.06.020.

23. Garzanti E., Limonta M., Resentini A., Bandopadhyay P.C., Najman Y., Andò S., Vezzoli G. (2013) Sediment recycling at convergent plate margins (Indo-Birman Ranges and Andaman–Nicobar Ridge). Earth Sci. Rev., 123, 113- 132. http://dx.doi.org/10.1016/j.earscirev.2013.04.008.

24. Hallsworth C.R., Chisholm J.I. (2008) Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies. Sediment. Geol., 203(3), 196-212. DOI: 10.1016/j.sedgeo.2007.11.002

25. Haughton P.D.W., Farrow C.M. (1989) Compositional variations in Lower Old Red Sandstone garnets from the Midland Valley of Scotland and the Anglo-Welsh Basin. Geol. Mag., 126, 373-396. DOI: 10.1017/S0016756800006579.

26. Hegner E., Gruler M., Hann H.P., Chen F., Güldenphenning M. (2005) Testing tectonic models with geochemical provenance parameters in greywacke. J. Geol. Soc. (London), 162, 87-96. DOI: https://doi.org/10.1144/0016-764904-029.

27. Henry D.J., Dutrow B.L. (1992) Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contrib. Mineral. Petrol., 112, 203-218. DOI: 10.1007/BF00310455.

28. Henry D.J., Dutrow B.L. (1996) Metamorphic tourmaline and its petrologic applications. Boron: mineralogy, petrology and geochemistry. Eds E.S. Grew, L.M. Anovitz. Rev. Mineral., 33, 503-557.

29. Henry D.J., Guidotti C.V. (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am. Mineral., 70, 1-15.

30. Henry D.J., Novák M., Hawthorne F.C., Ertl A., Dutrow B.L., Uher P., Pezzota F. (2011) Nomenclature of the tourmaline-supergroup minerals. Am. Mineral., 96(5-6), 895-913. DOI: https://doi.org/10.2138/am.2011.3636

31. Irvine T.N. (1974) Petrology of the Duke Island ultramafic complex, southeastern Alaska. Geol. Soc. Am. Memoir, 138, 240 p. DOI:https://doi.org/10.1130/MEM138-p1.

32. Kamenetsky V., Crawford A., Meffre S. (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol., 42(4), 655-671. DOI: https://doi.org/10.1093/petrology/42.4.655.

33. Kanouo N.S., Yongue R.F., Chen S., Njonfang E., Ma C., Ghogomu T.R, Zhao J., Sababa E. (2012) Greyish-Black Rutile Megaclasts from the Nsanaragati Gem Placer, SW Cameroon: Geochemical Features and Genesis. J. Geogr. Geol., 4(2), 134-146. DOI: https://doi.org/10.5539/jgg.v4n2p134.

34. Kooijman E., Mezger K., Berndt J. (2010) Constraints on the U-Pb systematics of metamorphic rutile from in situ LAICP-MS analysis. Earth Planet. Sci. Lett., 293(3-4), 321- 330. DOI: https://doi.org/10.1016/j.epsl.2010.02.047.

35. Kooijman E., Smit M.A., Mezger K., Berndt J. (2012) Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies. J. Metamorph. Geol., 30, 397-412. DOI: 10.1111/j.1525-1314.2012.00972.x.

36. Kowal-Linka M., Stawikowski W. (2013) Garnet and tourmaline as provenance indicators of terrigenous material in epicontinental carbonates (Middle Triassic, S Poland). Sediment. Geol., 291, 27-47. https://doi. org/10.1016/j.sedgeo.2013.03.005.

37. Krawinkel H., Wozazek S., Krawinkel J., Hellmann W. (1999) Heavy-mineral analysis and clinopyroxene geochemistry applied to provenance analysis of lithic sandstones from the Azuero-Sona complex (NW Panama). Sediment. Geol., 124, 149-168. https://doi. org/10.1016/S0037-0738(98)00125-0.

38. Krippner A., Meinhold G., Morton A.C., von Eynattena H. (2014) Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks. Sediment. Geol., 306, 36-52. http://dx.doi.org/10.1016/j.sedgeo.2014.03.004.

39. Lenaz D., Kamenetsky V., Crawford A., Princivalle F. (2000) Melt inclusions in detrital spinel from the SE Alps (Italy-Slovenia): a new approach to provenance studies of sedimentary basins. Contrib. Mineral. Petrol., 139(6), 748-758. DOI: https://doi.org/10.1007/s004100000170.

40. Leterrier J., Maury R.C., Thonon P. (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet. Sci. Lett., 59, 139-154. https://doi.org/10.1016/0012-821X(82)90122-4.

41. Mange M.A., Maurer H.F.W. (1991) Schwerminerale in Farbe. Stuttgart: Enke, 148 p.

42. Mange M.A., Morton A.C. (2007) Geochemistry of heavy minerals. Heavy Minerals in Use. Eds M.A. Mange, D.T. Wright. Dev. Sediment., 58. Elsevier, Amsterdam, 345-391.

43. Martínek K., Štolfová K. (2009) Provenance study of Permian non-marine sandstones and conglomerates of the Krkonoše Piedmont Basin (Czech Republic): exotic marine limestone pebbles, heavy minerals and garnet composition. Bull. Geosci., 84(3), 555-568. DOI: 10.3140/bull.geosci.1064.

44. Meinhold G. (2010) Rutile and its applications in earth sciences. Earth Sci. Rev., 102(1-2), 1-28. DOI: https://doi.org/10.1016/j.earscirev.2010.06.001.

45. Meinhold G., Anders B., Kostopoulos D., Reischmann T. (2008) Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece. Sediment. Geol., 203(1-2), 98-111. DOI: https://doi.org/10.1016/j.sedgeo.2007.11.004.

46. Meinhold G., Morton A.C., Fanning C.M., Whitham A.G. (2011) U-Pb SHRIMP ages of detrital granulite-facies rutiles: further constraints on provenance of Jurassic sandstones on the Norwegian margin. Geol. Mag., 148, 473-480. https://doi.org/10.1017/S0016756810000877.

47. Meinhold G., Reischmann T., Kostopoulos D., Frei D., Larionov A.N. (2010) Mineral chemical and geochronological constraints on the age and provenance of the eastern Circum-Rhodope Belt low-grade metasedimentary rocks, NE Greece. Sediment. Geol., 229(4), 207-223. DOI: https://doi.org/10.1016/j.sedgeo.2010.06.007.

48. Morton A.C. (1991) Geochemical studies of detrital heavy minerals and their application to provenance research. Development in sedimentary provenance studies. Eds A.C. Morton, S.P. Todd, P.D.W. Houghton. Spec. Publ. Geol. Soc. London, 57, 31-45. https://doi.org/10.1144/ GSL.SP.1991.057.01.04.

49. Morton A.C. (1985) Heavy minerals in provenance studies. Provenance of Arenites. Ed. G.G. Zuffa. Dordrecht: Reidel, 249-277. DOI: 10.1007/978-94-017-2809-6_12.

50. Morton A.C. (1987) Influences of provenance and diagenesis on detrital garnet suites in the Forties sandstone, Paleocene, central North Sea. J. Sediment. Petrol., 57, 1027-1032. http://dx.doi.org/10.1306/212F8CD8-2B24-11D7-8648000102C1865D.

51. Morton A., Chenery S. (2009) Detrital Rutile Geochemistry and Thermometry as Guides to Provenance of Jurassic–Paleocene Sandstones of the Norwegian Sea. J. Sed. Res., 79(7), 540-553. DOI: https://doi.org/10.2110/jsr.2009.054.

52. Morton A., Hallsworth C., Chalton B. (2004) Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance. Mar. Petrol. Geol., 21(3), 393-410. DOI: https://doi.org/10.1016/j.marpetgeo.2004.01.001.

53. Nascimento M., Góes A., Macambira M., Brod J. (2007) Provenance of Albian sandstones in the São Luís–Grajaú Basin (northern Brazil) from evidence of Pb-Pb zircon ages, mineral chemistry of tourmaline and palaeocurrent data. Sediment. Geol., 201(1-2), 21-42. DOI: https://doi.org/10.1016/j.sedgeo.2007.04.005.

54. Nechaev V.P. (1991) Evolution of the Philippine and Japan Seas from the clastic sediment record. Mar. Geol., 97, 167-190. DOI: 10.1016/0025-3227(91)90025-Y.

55. Nemec O., Huraiová M. (2018) Provenance study of detrital garnets and rutiles from basaltic pyroclastic rocks of Southern Slovakia (Western Carpathians). Geol. Carpathica, 69(1), 17-29. doi: 10.1515/geoca-2018-0002.

56. Nisbet E.G., Pearce J.A. (1977) Clinopyroxene composition in mafic lavas from different tectonic settings. Contrib. Mineral. Petrol., 63, 149-160. https://doi.org/10.1007/ BF00398776.

57. Okay N., Zack T., Okay A.I., Barth M. (2011) Sinistral transport along the Trans-European Suture Zone: detrital zircon-rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides. Geol. Mag., 148(3), 380-403. https://doi.org/10.1017/S0016756810000804.

58. Rosel D., Zack T., Barth M., Mоller A., Oalmann J. (2011) U/Pb age spectra of detrital rutile as a powerful tool for provenance analysis. Mineral. Mag., 75, 1735.

59. Rosel D., Zack T., Boger S.D. (2014) LA–ICP–MS U-Pb dating of detrital rutile and zircon from the Reynolds Range. A window into the Palaeoproterozoic tectonosedimentary evolution of the North Australian Craton. Precambr. Res., 255, 381-400. https://doi.org/10.1016/j.precamres.2014.10.006.

60. Rosel D., Zack T., Moller A. (2018) Interpretation and significance of combined trace element and U-Pb isotopic data of detrital rutile: a case study from late Ordovician sedimentary rocks of Saxo-Thuringia, Germany. Int. J. Earth Sci. (Geol. Rundsch.). https://doi.org/10.1007/ s00531-018-1643-5.

61. Rozendaal A., Philander C., Carelse C. (2009) Characteristics, recovery and provenance of rutile from the Namakwa Sands heavy mineral deposit, South Africa. What next. The 7th Int. Heavy Minerals Conf. The Southern African Institute of Mining and Metallurgy, 9-16.

62. Salata D. (2014) Detrital tourmaline as an indicator of source rock lithology: an example from the Ropianka and Menilite formations (Skole Nappe, Polish Flysch Carpathians). Geol. Quarterly, 58(1), 19-30. DOI: http://dx.doi. org/10.7306/gq.1133.

63. Schuiling R.D., deMeijer R.J., Riezebos H.J., Scholten M.J. (1985) Grain size distribution of different minerals in a sediment as a function of their specific density. Geol. Mijnbouw, 64, 199-203.

64. Small D., Parrish R.R., Austin W.E.N., Cawood P.A., Rinterknecht V. (2013) Provenance of North Atlantic ice-rafted debris during the last deglaciation – a new application of U-Pb rutile and zircon geochronology. Geology, 41(2), 155-158. https://doi.org/10.1130/G3359 4.1.

65. Stendal H., Toteu S.F., Frei R., Penaye J., Njel U.O., Bassahak J., Nni J., Kankeu B., Ngako V., Hell J.V. (2006) Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). J. African Earth Sci., 44, 443-458. https://doi.org/10.1016/j.jafrearsci.2005.11.012.

66. Tebbens L.A., Kroonenberg S.B., van der Berg M.W. (1995) Compositional variation of detrital garnets in Quaternary Rhine, Meuse and Baltic River sediments in the Netherlands. Geol. Mijnbouw, 74, 213-224.

67. Teraoka Y. (2003) Detrital garnets from Paleozoic to Tertiary sandstones in Southwest Japan. Bull. Geol. Surv. Japan, 54, 171-192.

68. Tomkins H.S., Powell R., Ellis D.J. (2007) The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol., 25(6), 703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x.

69. Triebold S., von Eynatten H., Luvizotto G., Zack T. (2007) Deducing source rock lithology from detrital rutile geochemistry: An example from the Erzgebirge, Germany. Chem. Geol., 244(3-4), 421-436. DOI: https://doi.org/10.1016/j.chemgeo.2007.06.033.

70. Triebold S., von Eynatten H., Zack T. (2005) Trace elements in detrital rutile as provenance indicator: Acase study from the Erzgebirge, Germany. Sediment 2005, Abstracts. Schriftenr. Dt. Ges. Geowiss. (Eds H. Haas, K. Ramseyer, F. Schlunegger), 38, 144-145.

71. Triebold S., von Eynatten H., Zack T. (2012) A recipe for the use of rutile in sedimentary provenance analysis. Sed. Geol., 282, 268-275. https://doi.org/10.1016/j.sedgeo.2012.09.008.

72. Újvári G., Klötzli U., Kiraly F., Ntaflos T. (2013) Towards identifying the origin of metamorphic components in Austrian loess: insights from detrital rutile chemistry, thermometry and U-Pb geochronology. Quat. Sci. Rev., 75, 132-142. https://doi.org/10.1016/j.quascirev.2013.06.002.

73. Vďačný M., Bačík P. (2015) Provenance of the Permian Malužina Formation sandstones (Male Karpaty Mountains, Western Carpathians): evidence of garnet and tourmaline mineral chemistry. Geol. Carpathica, 66(2), 83- 97. doi: 10.1515/geoca-2015-0012.

74. Velbel M.A. (2007) Surface textures and dissolution processes of heavy minerals in the sedimentary cycle: examples from pyroxenes and amphiboles. Heavy Minerals in Use. Eds M. Mange, D.K. Wright. Dev. Sediment., 58. Amsterdam, Elsevier, 112-150.

75. Viator D.B. (2003) Detrital Tourmaline as an Indicator of Provenance: a Chemical and Sedimentological Study of Modern Sands from the Black Hills, South Dakota. MSci. Thesis, Louisiana State University, Baton Rouge, 139 p.

76. von Eynatten H., Gaupp R. (1999) Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sed. Geol., 124, 81-111. https://doi.org/10.1016/S0037-0738(98)00122-5.

77. Wright W.I. (1938) The composition and occurrence of garnets. Am. Miner., 23, 436-449.

78. Zack T., Moraes R., Kronz A. (2004а) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol., 148, 471-488. https://doi.org/10.1007/s00410-004-0617-8.

79. Zack T., von Eynatten H.V., Kronz A. (2004б) Rutile geochemistry and its potential use in quantitative provenance studies. Sediment. Geol., 171, 37-58. https://doi.org/10.1016/j.sedgeo.2004.05.009.


Для цитирования:


Бадида Л.В., Маслов А.В., Мизенс Г.А. Реконструкция состава пород питающих провинций. Статья 3. Современные методы исследования тяжелых обломочных минералов (гранатов, турмалинов, хромшпинелидов, рутила и др.). Литосфера. 2020;20(2):149-167. https://doi.org/10.24930/1681-9004-2020-20-2-149-167

For citation:


Badida L.V., Maslov A.V., Mizens G.A. Provenance reconstructions. Article 3. Modern research methods for heavy detrital minerals (garnet, tourmaline, chromespinelide, rutile, chloritoid, pyroxene and amphibole). LITHOSPHERE (Russia). 2020;20(2):149-167. (In Russ.) https://doi.org/10.24930/1681-9004-2020-20-2-149-167

Просмотров: 231


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)