Preview

LITHOSPHERE (Russia)

Advanced search

Genesis of crystalline crust and lithosphere of ancient platforms according to data on the hot heterogeneous accretion of the Earth

Abstract

Compositions of gneisses from the Early Precambrian crystalline complexes of the Aldan shield and of mantle xenoliths from kimberlites plot along the magmatic fractionation trends. Their isotope age and crystallization temperature decrease in according to the sequence of their formation during fractionation. This indicates that the crystalline crust and lithosphere mantle formed as a result of crystallization and fractionation of a layered magma ocean. Evidence of chemical disequilibrium between the mantle rocks and metallic iron suggests that accretion of the Earth’s core occurred before that of the silicate mantle under the effect of magnetic forces. In the silicate magma ocean, which originated through impact melting, the processes of compressional crystallization and fractionation of its near-bottom parts occurred. Due to a very low pressure in the incipient magma ocean, the early formed residual melts varied in composition from granites to tholeiites. This provided very early formation of the acid crystalline crust. An increase in temperature during the accretion process resulted in the higher temperature of the upper mantle compared to the lower one. For this reason the lower mantle plumes did not ascend in the Early Precambrian, and magmas in ancient platforms were forming mainly from residual melts of compositionally varying layers of the magma ocean. In the Phanerozoic, the temperature of the lower mantle became higher than that of the upper one. As a result, lower mantle plumes, oceans and lithosphere of platforms came into existence. In the ascending mantle plumes, basic eclogites were subject to decompression melting. Fractionation of the formed magma chambers led to the formation of acid magmas under low pressure conditions and of various alkali-basic magmas under high pressures.

About the Author

Vladimir S. Shkodzinskii
Diamond and Precious Metal Geology Institute, SB RAS
Russian Federation


References

1. Березкин В.И., Смелов А.П., Зедгенизов А.Н., Кравченко А.А., Попов Н.В., Тимофеев В.Ф., Торопова Л.И. (2015) Геологическое строение центральной части Алдано-Станового щита и химический состав пород раннего докембрия (Южная Якутия). Новосибирск: Изд. СО РАН, 459 с.

2. Войткевич Г.В. (1983) Основы теории происхождения Земли. М.: Недра, 168 с.

3. Грин Д.Х., Рингвуд А.Е. (1968) Происхождение известково-щелочных магматических пород. Петрология верхней мантии. М.: Мир, 118-131.

4. Додд Р.Т. (1986) Метеориты - петрология и геохимия. М.: Мир, 382 с.

5. Рингвуд А.Е. (1981) Состав и петрология мантии Земли. М.: Недра, 584 с.

6. Сафронов В.С. (1987) Происхождение Земли. М.: Знание, 46 с.

7. Смелов А.П., Березкин В.И., Тимофеев В.Ф., Зедгенизов А.Н., Попов Н.В., Торопова Л.И. (2009) Геологическое строение западной части Алдано-Станового щита и химические составы пород раннего докембрия (Южная Якутия). Новосибирск: Изд. СО РАН, 168 с.

8. Федорин Я.В. (1991) Модель эволюции ранней Земли. Киев: Наукова думка, 112 с.

9. Шкодзинский В.С. (2014) Петрология литосферы и кимберлитов (модель горячей гетерогенной аккреции Земли). Якутск: Изд. СВФУ, 452 с.

10. Шкодзинский В.С. (2015) Плюмовая природа алмазов россыпей с неизвестным коренным источником. Литосфера, (2), 27-39.

11. Шмидт О.Ю. (1962) Происхождение Земли и планет. М.: Изд. АН СССР, 132 с.

12. Alifirova T.F., Pokhilenko L.N., Malkovets V.G., Griffin W.L. (2012) Petrological inferences for the role of exolution in upper mantle: evidence from the Yakutian kimberlite xenoliths. 10th International Kimberlite Conference. Bangalore, 101KC-048.

13. Arndt N.T. (1977) The separation of magmas from partially molten peridotite. Carnegie Institution of Washington, Yearbook. 76. 424-428.

14. Aulbach S., Griffin N.L., O’Reilly S.Y., McCandless T.E. (2003) The lithospheric mantle beneath Buffalo Head terrane, Alberta: xenoliths from the Buffalo Hills kimberlite. 8th International Kimberlite Conference, Long Abstracts. Victoria. Canada.

15. Harris P.G., Tozer D.C. (1967) Fractionation of iron in the Solar system. Nature, 215, 1449-1451.

16. Helmstaedt H., Doing R. (1975) Eclogite nodules from the Colorado plateau - samples of subducted Franciscan type oceanic lithosphere. Physics and Chemistry of the Earth, 9, 95-111.

17. Honda R., Mizutany H., Jamomoto T. (1998) Numerical simulation of Earth’s core formation. J. Geophys. Res., 988, 2075-2089.

18. Jacob D.E., Vilioen K.S., Grassineau N. (2008) Eclogite xenoliths from Kimberley, South Africa - a case study of extensive mantle metasomatism. 9th International Kimberlite Conference, Extended Abstract. 91KC-A-00393.

19. Johonson L., Phillips D. (2003) 40Ar-39Ar dating of mantle metasomatism: a nobble approach or all hot air. 8th International Kimberlite Conference, Long Abstracts. Victoria. Canada.

20. O’Neil H.S. (1990) Oxygen fugacity and siderophile elements in the Earth’s mantle: implications for the origin of the Earth. Meteoritics, 25, 395.

21. Raymond J., Quentin W. (1998) The core-mantle boundary region. Rev. Miner., 37, 241-259.

22. Snyder G.A., Borg L.E., Nyquist L.A. Taylor S.A. (2000) Chronology and isotopic constrains on Lunar evolution. The origin of the Earth and Moon. Univ. of Ariz. Press, 361-395.

23. Yin Q., Jacobsen S., Yamashita K., Blicher-Toft J., Telouk P., Albarede F.A. (2002.) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418, 949-952.


Review

For citations:


Shkodzinskii V.S. Genesis of crystalline crust and lithosphere of ancient platforms according to data on the hot heterogeneous accretion of the Earth. LITHOSPHERE (Russia). 2017;17(5):5-15. (In Russ.)

Views: 379


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)