Preview

LITHOSPHERE (Russia)

Advanced search

Cr, Co and rare earth elements systematics in ice-rafted sediments of northern part of the Beaufort gyre

https://doi.org/10.24930/1681-9004-2017-3-059-070

Abstract

The results of analysis of the systematics of Cr, Co and rare earth elements (REE) in ice-rafted sediments (IRS) of the northern part of the Beaufort Cycle (Arctic Ocean) are considered in the article. The IRS was assembled on the ARK-XIV-1/a cruise of the NIS Polarstern in 1998. The exact position of the sources of the IRS present in the ice has not been established to date. This is due, on the one hand, to the complex ice cycle in the Arctic Basin, on the other - a relatively small amount of data on the actual composition of the IRS. According to the views of most researchers, the main IRS supplier is the wide and shallow Siberian Arctic shelf. In the Beaufort Sea, the distinctive features of which are a much narrower shelf and almost constant presence of ice in the summer period, the conditions for the formation of the IRS are not so favorable. The contents of rare and scattered elements in the IRS samples were determined with the help of INAA at GEOKHI RAS. As a result of the research it was established that variations (La/Yb)N in the IRS from the northern part of the Beaufort cycle are characterized by the values 8.5-15.5. They fully correspond to the average value of this parameter in the suspension of pp. Mackenzie and the Arctic-Red River (8.6 and 8.5) and the mean (La/Yb)N for the crystalline formations of the Canadian Shield (14.4). In the same range are included, the values of (La/Yb)N for the suspension of Yana and Lena rivers (8.7 and 12.4), which may indicate the possibility of the presence in the IRS of material borrowed on the shelf of the eastern Laptev Sea. In the Co-Cr diagram, there is no overlapping of the fields of the compositions of the present bottom sediments of the estuary of Yenisei River, on the one hand, and the eastern part of the East Siberian and Chukchi seas, on the other. Although the sediments of the delta of the Mackenzie River, comparable to the precipitation of the estuary of the Yenisei River. by the content of Cr and differ from them by a noticeably lower content of Co. In the Cr-La diagram, the IRS field occupies an essentially isolated position, yet still has a certain overlap with the precipitation fields of the Chukchi Sea and the delta of Mackenzie River. In the diagram (La/Yb)N-La/Co, the field of IRS composition has a ≈50% overlap with the field of the present bottom sediments composition of the Chukchi Sea. The middle point of the suspension also gravitates towards Lena River, and the point of the Canadian Shield is relatively close, as well as the points of suspension of Mackenzie and Arctic-Red rivers and PAAS. Overlapping of the IRS fields and modern bottom sediments of the Ob and Yenisei estuaries, as well as the east of the East Siberian Sea, on the contrary, is not observed. The data given in the article allow us to conclude that the IRS in the area of the North Pole contains sedimentary material, borrowed both on the shelf of the Beaufort Sea and on the shelves of the eastern part of the Laptev Sea and the Chukchi Sea.

About the Authors

P. Shevchenko Vladimir
P.P. Shirshov Institute of Oceanology, RAS
Russian Federation


V. Maslov Andrey
A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of RAS
Russian Federation


P. Lisitzin Alexandr
P.P. Shirshov Institute of Oceanology, RAS
Russian Federation


N. Novigatsky Alexandr
P.P. Shirshov Institute of Oceanology, RAS
Russian Federation


Stein Rüdiger
Alfred Wegener Institute of Polar and Marine Research
Russian Federation


References

1. Асадулин Э.Э., Мирошников А.Ю., Величкин В.И. (2013) Геохимическая специализация донных осадков в зонах смешения вод Оби и Енисея с водами Карского моря. Геохимия, (12), 1116-1129.

2. Астахов А.С., Ван Р., Крэйн К., Иванов М.В., Айгуо Г. (2013) Литохимическая типизация обстановок полярного осадконакопления (Чукотское море) методами многокомпонентного статистического анализа. Геохимия, (4), 303-325.

3. Колесник А.Н. (2015) Геохимические особенности современного осадконакопления в Чукотском море. Дис. … канд. геол.-мин. наук. Владивосток: ТОИ ДВО РАН, 142 с.

4. Колесов Г.М. (1994) Определение микроэлементов. Нейтронно-активационный анализ в геохимии и космохимии. Журнал аналитической химии, 49(1), 160-171.

5. Коновалов Г.С., Иванова А.А., Колесникова Т.Х. (1966) Микроэлементы в воде и во взвешенных веществах Азиатской территории СССР. Гидрохим. матер., 42, 112-123.

6. Левитан М.А., Лаврушин Ю.А., Штайн Р. (2007) Очерки истории седиментации в Северном Ледовитом океане и морях Субарктики в течение последних 130 тыс. лет. М.: ГЕОС, 404 с.

7. Левитан М.А., Сыромятников К.В., Кузьмина Т.Г. (2012) Некоторые литолого-геохимические особенности современной и четвертичной седиментации в Северном Ледовитом океане. Геохимия, (7), 627-643.

8. Лисицын А.П. (1978) Процессы океанской седиментации. Литология и геохимия. М.: Наука, 392 с.

9. Лисицын А.П. (1994) Ледовая седиментация в Мировом океане. М.: Наука, 448 с.

10. Лисицын А.П. (2010) Новый тип cедиментогенеза в Арктике - ледовый морской: новые подходы к исследованию процессов. Геология и геофизика, 51(1), 18-60.

11. Лисицын А.П., Гурвич Е.Г., Лукашин В.Н., Емельянов Е.М., Зверинская И.Б., Куринов А.Д. (1980) Геохимия элементов-гидролизатов. М.: Наука, 238 с.

12. Маслов А.В., Ножкин А.Д., Подковыров В.Н., Летникова Е.Ф., Туркина О.М., Гражданкин Д.В., Дмитриева Н.В., Ишерская М.В., Крупенин М.Т., Ронкин Ю.Л., Гареев Э.З., Вещева С.В., Лепихина О.П. (2008) Геохимия тонкозернистых терригенных пород верхнего докембрия Северной Евразии. Екатеринбург: УрО РАН, 274 с.

13. Морозов Н.П., Батурин Г.Н., Гордеев В.В., Гурвич Е.Г. (1974) О составе взвесей и осадков устьевых районов Северной Двины, Мезени, Печоры и Оби. Гидрохим. матер., 60, 60-73.

14. Нестерова И.Л. (1960) Химический состав взвесей и растворенных веществ реки Оби. Геохимия, (4), 355-361.

15. Савенко В.С. (2006) Химический состав взвешенных наносов рек мира. М.: ГЕОС, 174 с.

16. Савенко В.С., Покровский О.С., Дюпре Б., Батурин Г.Н. (2004) Химический состав взвешенного вещества крупных рек России и сопредельных стран. Докл. АН, 398(1), 97-101.

17. Шевченко В.П., Лисицын А.П., Полякова Е.И., Детлеф Д., Серова В.В., Штайн Р. (2002) Распределение и состав осадочного материала в снежном покрове дрейфующих льдов Арктики (пролив Фрама). Докл. АН, 383(3), 385-389.

18. Шевченко В.П., Маслов А.В., Штайн Р. (2015) Распределение редких и рассеянных элементов в осадочном материале, переносимом дрейфующими льдами над плато Ермак, Арктика. Геология морей и океанов. Мат-лы XXI междунар. науч. конф. (Школы) по морской геологии. (Ред.: А.П. Лисицын, Н.В. Политова, В.П. Шевченко). IV. М.: ГЕОС, 337-341.

19. Шевченко В.П., Маслов А.В., Штайн Р. (2016) Распределение ряда редких и рассеянных элементов в осадочном материале, переносимом дрейфующими льдами в районе плато Ермак, Северный Ледовитый океан. Океанология, 57, В печати.

20. Шевченко В.П., Северина О.В., Майорова Н.Г., Иванов Г.В. (1996) Количественное распределение и состав взвеси в эстуариях Оби и Енисея. Вестн. Моск. ун-та. Сер. 4. Геология, (3), 81-86.

21. Andrews J.T., Hardardottir J. (2009) A comparison of Holocene sediment- and paleomagnetic characteristics from the margins of Iceland and East Greenland. Jokull, 59, 51-66.

22. ARCTIC’98: The Expedition ARK-XIV/1a of RV “Polarstern” in 1998 (1999) Ed. W. Jokat. Ber. Polarforsch., 308, 159 p.

23. Behrends M., Peregovich B., Stein R. (1996) Terrigenous sediment supply into the Arctic Ocean: Heavy-mineral distribution in the Laptev Sea. Ber. Polarforsch., 212, 37-42.

24. Chen Z., Gao A., Liu Y., Sun H., Shi X., Yang Z. (2003) REE geochemistry of surface sediments in the Chukchi Sea. Science in China. Series D: Earth Sciences, 46(6), 603-611.

25. Condie K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol., 104, 1-37.

26. Cullers R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51, 305-327.

27. Cullers R.L., Basu A., Suttner L.J. (1988) Geochemical signature of provenance in sand size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chem. Geol., 70, 335-348.

28. Cullers R.L., Podkovyrov V.N. (2002) The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precam. Res., 117, 157-183.

29. Darby D.A. (2003) Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns. J. Geophys. Res., 108(C8), 3257, doi:10.1029/2002JC001350.

30. Dethleff D., Kuhlmann G. (2010) Fram Strait sea-ice sediment provinces based on silt and clay compositions identity Siberian Kara and Laptev seas as main source areas. Polar Res., 29, 265-282.

31. Eicken H., Reimnitz E., Alexandrov V., Martin T., Kassens H., Viehoff T. (1997) Sea-ice processes in the Laptev Sea and their importance for sediment export. Cont. Shelf Res., 17, 205-233.

32. Farmer G.L., Licht K., Swope R.J., Andrews J.T. (2006) Isotopic constraints on the provenance of fine-grained sediment in LGM tills from the Ross Embayment, Antarctica. Earth Planet. Sci. Lett., 249, 90-107.

33. Gaillardet J., Dupre B., Allegre C.J. (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim. Cosmochim. Acta, 63(23/24), 4037-4052.

34. Gordeev V.V., Shevchenko V.P. (1995) Chemical composition of suspended sediments in the Lena River and its mixing zone. Ber. Polarforsch., 176, 154-169.

35. Gordeev V.V., Beeskow B., Rachold V. (2007) Geochemistry of the Ob and Yenisey estuaries: A comparative study. Ber. Polarforsch., 565, 235 p.

36. Hemming S.R., Vorren T.O., Kleman J. (2002) Provinciality of ice rafting in the North Atlantic: Application of 40Ar/39Ar dating of individual ice rafted hornblende grains. Quat. Int., 95-96, 75-85.

37. Lisitzin A.P. (2002) Sea-ice and iceberg sedimentation in the Ocean: recent and past. Berlin, Springer, 2002. 563 p.

38. Lisitzin A.P., Shevchenko V.P. (2016) Glacial-marine sedimentation. Encyclopedia of Marine Geosciences. (eds J. Harff, M. Meschede, S. Petersen, J. Thiede). Dordrecht: Springer Science + Business Media, 288-294.

39. Martin J.M., Meybeck M. (1979) Chemical composition of river-borne particulates. Marine Chem., 7(2), 193-206.

40. McLennan S.M. (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, paper 2000GC000109, 24 p.

41. Meese D.A., Reimnitz E., Tucker III W.B., Gow A.J., Bischof J., Darby D. (1997) Evidence for radionuclide transport by sea ice. The Science of the Total Environment, 202, 267-278.

42. Nürnberg D., Wollenburg I., Dethleff D., Eicken H., Kassens H., Letzig T., Reimnitz E., Thiede J. (1994) Sediments in Arctic sea ice: Implications for entrainment, transport and release. Marine Geology, 119, 185-214.

43. Pfirman S., Lange M.A., Wollenburg I., Schlosser P. (1990) Sea ice characteristics and the role of sediment inclusions in deep-sea deposition: Arctic-Antarctic comparisons. Geological history of the Polar Oceans: Arctic versus Antarctic. (Eds U. Bleil, J. Thiede). Dordrecht, Kluwer Academic Publishers, 187-211.

44. Pirrung M., Futterer D., Grobe H., Matthiessen J., Niessen F. (2002) Magnetic susceptibility and ice-rafted debris in surface sediments of the Nordic Seas: Implications for Isotope Stage 3 oscillations. Geo-Marine Letters, 22, 1-11.

45. Puy-Alquiza M.J., Miranda-Aviles R., Cruz-Cruz M., Pérez-Arbizu O., Vega-González M., Ana-Zanor G. (2014) Geochemistry and depositional environment of the Losero Formation in the Mesa Central, México. Boletín de la Sociedad Geológica Mexicana, 66, 413-430.

46. Rachold V. (1999) Major, trace and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Arctic Ocean. Land-Ocean Systems in the Siberian Arctic: Dynamics and History. Berlin, Springer-Verlag, 199-222.

47. Rachold V., Alabyan A., Hubberten H.-W., Korotaev V.N., Zaitsev A.A. (1996) Sediment transport to the Laptev Sea - hydrology and geochemistry of the Lena River. Polar Res., 15(2), 183-196.

48. Reimnitz E., Dethleff D., Nurnberg D. (1994) Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea. Marine Geology, 119, 215-225.

49. Shaw D.M., Reilly G.A., Muysson J.R., Pattenden G.E., Campbell F.E. (1967) An estimate of the chemical composition of the Canadian Precambrian shield. Can. J. Earth Sci., 4, 829-853.

50. Shaw D.M., Dostal J., Keays R.R. (1976) Additional estimates of continental surface Precambrian shield composition in Canada. Geochim. Cosmochim. Acta, 40, 73-83.

51. Stein R. (2008) Arctic Ocean sediments: processes, proxies and paleoenvironment. Developments in marine geology. 2nd ed. Amsterdam, Elsevier, 592 p.

52. Taylor S.R., McLennan S.M. (1985) The Continental Crust; Its composition and evolution. London, Blackwell, 320 p.

53. Verplanck E.P., Farmer G.L., Andrews J., Dunhil, G., Millo C. (2009) Provenance of Quaternary glacial and glacimarine sediments along the southeast Greenland margin. Earth Planet. Sci. Lett., 286, 52-62.

54. Viscosi-Shirley C. (2001) Siberian-Arctic Shelf Surface-Sediments: Sources, Transport Pathways and Processes, and Diagenetic Alteration. A dissertation Doctor of Philosophy in Oceanography submitted to Oregon State University. 178 p.

55. Viscosi-Shirley C., Pisias N., Mammone K. (2003) Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic’s Chukchi and Laptev shelves. Cont. Shelf Res., 23, 1201-1225.

56. Vonk J.E., Giosan L., Blusztajn J., Montlucon D., Pannatier E.G., McIntyre C., Wacker L., Macdonald R.W., Yunker M.B., Eglinton T.I. (2015) Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system. Geochim. Cosmochim. Acta, 171, 100-120.


Review

For citations:


Vladimir P.Sh., Andrey V.M., Alexandr P.L., Alexandr N.N., Rüdiger S. Cr, Co and rare earth elements systematics in ice-rafted sediments of northern part of the Beaufort gyre. LITHOSPHERE (Russia). 2017;17(3):59-70. (In Russ.) https://doi.org/10.24930/1681-9004-2017-3-059-070

Views: 414


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)