Preview

LITHOSPHERE (Russia)

Advanced search

Murzinka massive at the middle urals as an example of the interformational granite pluton: magmatic sources, geochemical zonality, peculiarities of formation

https://doi.org/10.24930/1681-9004-2018-18-5-672-691

Abstract

Murzinka massif is a sheet-like interformational body steeply deeping to the East with length about 6 km. Proterozoic metamorphic rocks of the predominantly granulite facies ( P = 5-6 kbar, T = 750-800°C) occur at the base of massif, and volcanic-sedimentary Silurian-Devonian rocks metamorphosed in the epidote-amphibolite facies - in the roof of it. Analyzes of rocks are made in the Institute of Geology and Geochemistry. A.N. Zavaritsky (Ekaterinburg, Russia) by standard methods. Petrogen elements were determined on the X-ray fluorescence spectrometers CPM-18, CPM-25, VRA-30 and the rare elements - on the ICP-MS mass spectrometer ELAN-9000 company Perkin Elmer. In the eastern direction the rocks lying in the base of the massif change their composition from predominantly basic to granitic. The gneisses of granitoid composition underwent a high degree of melting, and theirs anatectic melt formed the western part of Murzinka massif. The granites form three complexes: yuzhakovsk - vein of biotite orthoclase antiperthite granites, varying in K2O content, in the metamorphic rocks of the base of the massif, the vatikha - biotite orthoclase antiperthite granites in western part of the murzinka massif, and the murzinka s.s. - two-mica predominantly microcline granites in the eastern part of the massif. Vatikha and murzinka granites have the same isotopic age (about 255 Ma). A clear geochemical zonation is revealed in the massif: from the west to the east (from the base to the roof), the contents of Rb, Li, Nb, Ta grow in the granites of the vatikha and murzinka complexes. In the same direction, the ratios K/Rb, Zr/Hf, Nb/Ta decrease, as well as the content of Ba and Sr. Accordingly, the compositions of such rock-forming minerals as plagioclase and biotite also change. The isotope characteristics of the granites of the vatikha (Sri = 0.70868-0.70923 and εNd255 from -8.9 to -11.9) and murzinka (Sri = 0.70419-0.70549, εNd255 from -2.6 to +2.3) complexes suggest that the substratum of the former was the Proterozoic granite-gneisses, and of the second - the rocks of the newly formed crust, possibly similar to the Silurian-Devonian volcanogenic-sedimentary rocks, which contact with the murzinka granites at the west.

About the Authors

German B. Fershtater
A.N. Zavaritsky Institute of Geology and Geochemistry, Urals Branch of RAS
Russian Federation


Nadezhda S. Borodina
A.N. Zavaritsky Institute of Geology and Geochemistry, Urals Branch of RAS
Russian Federation


References

1. Борщов С.К., Ферштатер Г.Б. (2017) Самоцветная полоса Урала: Алабашское рудное поле, жила Мокруша. Путеводитель Среднеуральской полевой экскурсии. “Граниты и эволюция Земли”. III Междунар. геол. конф. Екатеринбург: ИГГ УрО РАН, 27-37.

2. Кейльман Г.А. (1974) Мигматитовые комплексы подвижных поясов. М.: Недра, 200 с.

3. Коровко А.В., Двоеглазов Д.А. (1986) Геологическая позиция и внутреннее строение мурзинского метаморфического комплекса. Корреляция и картирование магматических и метаморфических комплексов Урала. Свердловск: ИГГ УРО РАН, 73-75.

4. Краснобаев А.А., Беа Ф., Ферштатер Г.Б., Монтеро П. (2005) Цирконовая геохронология Мурзинского метаморфического комплекса (Средний Урал). Докл. АН. 404(3). 407-410.

5. Левин В.Я., Коротеев В.А., Звонарева Г.К. (1975) Корундовые сиениты копи Юбилейной. Материалы к минералогии Урала. Тр. Ильменского гос. мин. заповедника. Вып. 13, 44-49.

6. Орогенный гранитоидный магматизм Урала. (1994) (Под ред. Г.Б. Ферштатера). Миасс: ИГГ УрО РАН, 250 с.

7. Попов В.А., Попова В.И. (1975) К механизму формирования полевошпатовых очков вокруг кристаллов корунда копи “Юбилейная” в Ильменских горах. Материалы к минералогии Урала. Тр. Ильменского мин. заповедника, 50-57.

8. Таланцев А.С. (1988.) Камерные пегматиты Урала. М.: Наука, 144 с.

9. Ферсман А.Е. (1940) Пегматиты. М.: Изд. АН СССР, 712 с.

10. Ферштатер Г.Б. (1987) Петрология главных интрузивных ассоциаций. М.: Наука, 232 с.

11. Ферштатер Г.Б. (1990) Эмпирический плагиоклаз-роговообманковый барометр. Геохимия, (3), 328-335

12. Ферштатер Г.Б. (2013) Палеозойский интрузивный магматизм Среднего и Южного Урала. Екатеринбург: Изд. УрО РАН, 365 с.

13. Ферштатер Г.Б., Бородина Н.С. (1975) Петрология магматических гранитоидов. М.: Наука, 287 с.

14. Штейнберг Д.С.( 1985) О классификации магматитов. М.: Наука, 159 с.

15. Clemens J.D., Mawer C.K. (1992) Granite magma transport by fracture propagation. Tectonophysics, 204(3-4), 331-360.

16. Couzinie S., Moyen J.-F., Villaros A., Paquette J.-L., Scarrow J.H., Marignac C. (2014) Temporal relatioships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France) J. Geosci., 59, 69-86.

17. Gerdes A., Montero P., Bea F., Fershtater G., Borodina N., Osipova T., Shardakova G. (2002) Peraluminous granites frequently with mantle-like isotope compositions: the continental-type Murzinka and Dzhabyk batholith of the eastern Urals. Intern. J. Earth Sci. (Geol. Rundsch), 91, 3-19.

18. Holtz F., Becker A., Freise M., Johannes W. (2001) The water-saturated and dry Qz-Ab-Or system revised. Experimental results of very low water activities and geological implications.Contrib Mineral Petrtol., 141, 347-357.

19. Huang W.L., Willie R.J. (1973) Melting relations of muscovite granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib. Mineral. Petrtol., 42, 1-14.

20. Johannes W., Holtz F. (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin, Heidelberg, New York. 336 р.

21. Le Maitre R.W. (ed.). (1989) A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 193 p.

22. Molina J. F., Moreno J.A., Castro A., Rodriguez, Fershtater G.B. (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232, 286-305.

23. Montero P., Bea F., Gerdes A., Fershtater G.B., Osipova T.A., Borodina N.S., Zinkova E.A.( 2000) Single-zircon evaporation ages and Rb-Sr dating of four major Variscan batholiths of the Urals. A perspective on the timing of deformation and granite generation. Tectonophysics, 317, 93-108.

24. Muller A., Romer R.L., Pedersen R.-B. (2017) The sveconorvegian pegmatite province - thousands of pegmatites without parental granites. Canad. Mineral., 55, 283-315.

25. Petford N., Kerr C.R., Lister R.G. (1993) Dike transport of granitoid magmas.Geology, 21, 845-848.

26. Ribbe P.H. (1975) Feldspar mineralogy: short course notes.(Ed. P.H. Ribbe). Blacksburg: Amer. Miner. Soc. Southern print. Co., V. 2, 1-52.

27. Sabatier H. (1980) Vaugnerites and granites, a peculiar association of basic and acid rocks. Bull. Mineral., 103. 507-522.

28. Sabatier H. (1991) Vaugnerites: special lamprophyre-derived mafic enclaves in some Hercynian granites from Western and Central Europe. Enclaves and granite petrology. (Еds J. Didier., B. Barbarin) Elsevier, Amsterdam, 63-81.

29. Scarrow J.H., Molina J., Bea F., Montero P. (2009) Within-plate calc-alkaline rocks: insights from alkaline mafic magmas - peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos, 110, 50-64.

30. Winchester J.A., Floyd, P.A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 20, 325-343.


Review

For citations:


Fershtater G.B., Borodina N.S. Murzinka massive at the middle urals as an example of the interformational granite pluton: magmatic sources, geochemical zonality, peculiarities of formation. LITHOSPHERE (Russia). 2018;(5):672-691. (In Russ.) https://doi.org/10.24930/1681-9004-2018-18-5-672-691

Views: 722


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)