Preview

LITHOSPHERE (Russia)

Advanced search

The early evolution of the earth, the beginning of its geological history: how and when the granitoid magmas appeared

https://doi.org/10.24930/1681-9004-2018-18-5-653-671

Abstract

The Earth has a number of differences from the planets of the Solar System and other star-planetary systems. These differences were acquired during its formation and geological history. In the early Chaotic eon occurred the accretion of the Earth, the separation of the primary substance of the Earth into a mantle and a nucleus, a satellite of the Earth - the Moon appeared. 4500 Ma ago in the Gadey aeon the geological history of the Earth began. At this time, the endogenous processes on the Earth were controlled to a great extent by meteorite-asteroid bombardments, which caused large-scale melting and differentiation of the upper shells of the Earth. In the magmatic chambers differentiation proceeded until the appearance of melts of granitoid composition. The continental crust of Gadey time was almost completely destroyed by meteoric bombardments, the last heavy bombardment occurred at the end of the Gadey aeon 4000-3900 Ma ago. The geological situation of the Gadey time can be judged only from the preserved zircons from the rocks of that epoch. In particular, their geochemical features indicate that the Earth has an atmosphere. The Gadey eon was replaced by the Archean one, from which the processes of self-organization began to predominate on the Earth. At this time, a crust composed of komatiite-basalt and tonalite-trondhjemite-granodiorite (TTG) series of rocks was formed. In its formation, the processes of sagduction (vertical growth of the crust) over the rising mantle plumes was played the leading role. At the same time the lower basaltic crust was bured in the mantle, eclogitized and melted, which led to the appearance of the sodium series of TTG rocks. At the end of the Archean 3.1-3.0 Ga tectonics of the cover (LID tectonics), which determined the style of the structure and development of the Archean crust, is replaced by the tectonics of small plates, which was later replaced by modern tectonics - the tectonics of plates combined with mantle plumes.

About the Authors

Mikhail I. Kuzmin
Institute of Geochemistry SB RAS
Russian Federation


Vladimir V. Yarmolyuk
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)
Russian Federation


Alexander B. Kotov
3Institute of Geology and Geochronology of the Precambrian of the Russian Academy of Sciences (IGGD RAS)
Russian Federation


References

1. Батыгин К., Лафлин Г., Морбиделли А. (2016) Рожденные из хаоса. В мире науки, (7), 16-27.

2. Глуховский М.З., Моралев В.М., Кузьмин М.И. (1977) Тектоника и петрогенезис катархейского комплекса Алданского щита в связи с проблемой протофиолитов. Геотектоника, (6), 103-117.

3. Костицын Ю.А. (2012) Возраст земного ядра по изотопным данным: согласование Hf-W и U-Pb систем. Геохимия, (6), 531-554.

4. Кузьмин М.И. (2014) Докембрийская история зарождения и эволюции Солнечной системы и Земли. Ст. I. Geodynam. Tectonophys., 5(3), 625-640.

5. Кузьмин М.И., Ярмолюк В.В. (2017) Биография Земли: основные этапы геологической истории. Природа, (6), 12-25.

6. Кузьмин М.И., Ярмолюк В.В. (2016) Изменение стиля тектонических движений в процессе эволюции Земли. Докл. АН, 469(6), 706-710.

7. Лин Д. (2008) Происхождение планет. В мире науки, (8), 22-31.

8. Хаин В.Е. (2003) Основные проблемы современной геологии. М.: Науч. мир, 348 с.

9. Allègre C.J., Poirier J.P., Humler E., Hofmann A.W. (1995) The Chemical-Composition of the Earth. Earth Planet., Sci. Lett., 134(3-4), 515-526. http://dx.doi.org/10.1016/0012-821X(95)00123-T

10. Bauer A.M., Fisher C.M., Vervoort J.D., Bowring S.A. (2017) Coupled zircon Lu-Hf and U-Pb isotopic analyses of the oldest terrestrial crust, the >4.03Ga Acasta Gneiss Complex. Earth Planet. Sci. Lett., 458, 37-48.

11. Bédard J.H. (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta, 79, 1188-1214.

12. Cameron A.G.W. (1986) The impact theory for origin of the Moon. Origin of the Moon (Eds W.K. Hartmann, R.J. Phillips, G.J. Taylor). Houston, TX: Lunar & Planetary Institute, 609-616.

13. Condie K.C. (2011) Earth as an evolving Planetary System. Elsevier, 574 p.

14. Garnero E.J., McNamara A.K. (2008) Structure and Dynamics of Earth’s Lower Mantle. Science, 320, 626-628.

15. Gilat A., Vol. A. (2012) Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geosci. Front., 1, 911-921. doi:10.1016/j.gsf.2012.03.009

16. Goldblatt C., Zahnle K.J., Sleep N.H., Nisbet E.G. (2010) The eons of chaos and hades. Solid Earth, 1, 1-3. http://dx.doi.org/10.5194/se-1-1-2010

17. Grange M.L., Pidgeon R.T., Nemchin A.A., Timms N.E., Meyer C. (2013) Interpreting the U-Pb data from primary and secondary features in lunar zircon. Geochim. Cosmochim. Acta, 101, 112-132. http://dx.doi.org/10.1016/j.gca.2012.10.013

18. Halla J., Whitehouse M.J., Ahmad T., Bagai Z. (2017) Archaean granitoids: an overview and significance from a tectonic perspective http://sp.lyellcollection.org/bu guest on February 3

19. Harrison T.M., Schmitt A.K., McCulloch M.T., Lovera O.M. (2008) Early (N = 4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett., 268(3-4), 476-486.

20. Hartmann W.K. (1986). Moon origin: the impact-trigger hypothesis. Origin of the Moon (Eds W.K. Hartmann, R.J. Phillips, G.J. Taylor). Houston, TX: Lunar & Planetary Institute, 579-608. http://dx.doi.org/10.1016/j.epsl.2008.02.011.

21. Iizuka T., Horie K., Komiya T., Maruyama S., Hirata T., Hidaka H., Windley B.F. (2006) 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: Evidence for early continental crust. Geology, 34(4), 245-248.

22. Jackson M.G., Carlson R.W., Kurz M.D., Kempton P.D., Don Francis, Blusztajn J. (2010) Evidence for the survival of the oldest terrestrial mantle reservoir. Nature, 466, 853-856.

23. Jackson M.G., Konter J.G., Becker T.W. (2017) Primordial helium entrained by the hottest mantle plumes. Nature, 542, 340-343.

24. Lauretta D. (2011) A cosmochemical view of the Solar System. Elements, 7(1), 11-16. http://dx.doi.org/10.2113/gselements.7.1.11

25. Maas R., Kinny P.D., Williams I.S., Froude D.O., Compston W. (1992) The Earths oldest known crust - a geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta, 56(3), 1281-1300. http://dx.doi.org/10.1016/0016-7037(92)90062-N

26. Maruyama S., Ebisuzaki T. (2017) Origin of the Earth: A proposal of new model called ABEL. Geosci. Front., 8, 253-274.

27. Masset F., Snellgrove M. (2001) Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc., 320(4), L55-L59.

28. McDonough W.G., Sun S.S. (1995) The composition of the Earth. Chem. Geol., 120(3-4), 223-253. http://dx.doi.org/10.1016/0009-2541(94)00140-4

29. Myers J.S. (1988) Early Archean Narryer gneiss complex, Yilgarn Craton, Western-Australia. Precambr. Res., 38(4), 297-307. http://dx.doi.org/10.1016/0301-9268(88)90029-0

30. Nebel O., Rapp R.P., Yaxley G.M. (2014)The role of detrital zircons in Hadean crustal research. Lithos, 190-191, 313-327.

31. Newsom H.E., Taylor S.R. (1989) Geochemical implications of the formation of the Moon by a single giant impact. Nature, 338, 29-34.

32. O’Neil J., Carlsona R.W., Paquetteb J.L., Francisc D. (2012) Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambr. Res., 220-221, 23-44.

33. Pease V., Percival J., Smitbies J., Stevens G., Kranendank M. (2008) When did plate tectonics begin? Evidence from the orogenic record. Geol. Soc. Amer., Spec. Paper, 440, 199-228.

34. Reimink J.R., Chacko T., Stern R.A., Heaman L.M. (2014) Earth’s earliest evolved crust generated in an Iceland-like setting. Nat. Geosci., 7, 529-533.

35. Roth A.S.G., Bourdon B., Mojzsis S.J., Touboul M., Sprung P., Guitreau M., Blichert-Toft J. (2013) Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet. Sci. Lett., 361, 50-57.

36. Stern R.J. (2008) Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth’s tectonic history. Geol. Soc. Amer., Spec. Paper, 440, 265-280.

37. Taylor D.J., McKeegan K.D., Harrison T.M. (2009) Lu-Hf zircon evidence for rapid lunar differentiation. Earth Planet. Sci. Lett., 279(3-4), 157-164. http://dx.doi.org/10.1016/j.epsl.2008.12.030

38. Wood B. (2011) The formation and differentiation of Earth. Physics Today, 64(12), 40-45. http://dx.doi.org/10.1063/PT.3.1362

39. Wood B.J., Halliday A.N. (2010) The lead isotopic age of the Earth can be explained by core formation alone. Nature, 465(7299), 767-771. http://dx.doi.org/10.1038/nature09072


Review

For citations:


Kuzmin M.I., Yarmolyuk V.V., Kotov A.B. The early evolution of the earth, the beginning of its geological history: how and when the granitoid magmas appeared. LITHOSPHERE (Russia). 2018;(5):653-671. (In Russ.) https://doi.org/10.24930/1681-9004-2018-18-5-653-671

Views: 5397


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)