Preview

LITHOSPHERE (Russia)

Advanced search

Impact of seismotectonic processes on the geoelectrical parameters of permafrost in the Altai mountains

https://doi.org/10.24930/1681-9004-2025-25-6-1416-1427

Abstract

   Research object. The epicentral zone of the destructive Chuya earthquake of 2003 (M = 7.2), characterized by a prolonged nonlinear aftershock period. The epicenter of the earthquake was located in the intermountain pass between the Chuya and Kurai depressions of the Altai Mountains, only 15 km from the study site located in the western part of the Chuya depression in the Chagan River valley.

   Aim. To determine the geoelectrical structure of the Chagan River valley, to identify areas of development of permafrost deposits. Additionally, to track the dynamics of changes in the geoelectrical parameters of permafrost deposits during the aftershock period of the earthquake based on regular long-term observations, and to compare the geoelectrical data with the seismicity characteristics of the Chuya–Kurai seismic active zone.

   Methods. Electromagnetic methods with a controlled source were used to study the distribution of permafrost deposits in the valley, which exhibited uneven distribution.

   Results. The study allowed us to determine variations in the thickness and specific electrical resistivity of the layers of permafrost. Comparison of the seismic activity parameters of the area with the geo-electrical characteristics of the permafrost showed a significant influence of changes in seismic regime on these properties. During the periods of activation, permafrost degraded, while recovery occurred during the periods of reduced activity, with variations in geo-electrical parameters reaching 50–80 %.

   Conclusions. The obtained results demonstrate the potential of using electromagnetic methods for continuous monitoring of the state of permafrost, emphasizing their effectiveness in understanding the relationship between seismic activity and the state of permafrost.

About the Authors

N. N. Nevedrova
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS; Federal Research Center “Unified Geophysical Service of the Russian Academy of Sciences”
Russian Federation

Nina N. Nevedrova

630090; 3 Academician Koptyug av.; Novosibirsk



P. V. Ponomarev
Federal Research Center “Unified Geophysical Service of the Russian Academy of Sciences”
Russian Federation

Petr V. Ponomarev

630090; 3 Academician Koptyug av.; Novosibirsk



A. M. Sancha
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS
Russian Federation

Aidisa M. Sancha

630090; 3 Academician Koptyug av.; Novosibirsk



I. O. Shaparenko
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS
Russian Federation

Ilya O. Shaparenko

630090; 3 Academician Koptyug av.; Novosibirsk



References

1. Altangerel D., Tsogbadral Kh. (2016) Study of permafrost in the mountains of the Mongolian Altai (based on the Tsagaan-Nuur lake basin). Nauch. Obozrenie. Biol. Nauki, (1), 47-50. (In Russ.)

2. Babushkin S.M., Nevedrova N.N. (2017) Equipment and methodological tools for searching for ore deposits using the non-stationary electromagnetic sounding method. International Scientific Congress Interexpo GEO-Siberia-2017. V. 4. Novosibirsk, SGUGiT Publ., 207-212. (In Russ.)

3. Balkov E.V., Panin G.L., Manshtein Yu.A., Manshtein A.K., Beloborodov V.A. (2012) Electrical tomography: equipment, methodology, and application experience. Geofizika, (6), 54-63. (In Russ.)

4. Bartsch A., Strozzi T., Nitze I. (2023) Permafrost monitoring from space. Surveys in Geophysics, 44, 1579-1613. doi: 10.1007/s10712-023-09770-3

5. Buddo I., Sharlov M., Shelokhov I., Misyurkeeva N., Seminsky I., Selyaev V., Agafonov Y. (2022) Applicability of transient electromagnetic surveys to permafrost imaging in Arctic West Siberia. Energies, 15(5), 1-16. doi: 10.3390/en15051816

6. Buslov M.M., Imaev V.S. (2020) Model of the formation of intracontinental deformations in Central Asia and patterns of seismicity manifestation. Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent). Proceedings of the conference, vyp. 18. Irkutsk, IZK SO RAN Publ., 41-44. (In Russ.)

7. Cunningham K., Hatfield M., Pericon L.S. (2015) Unmanned aircraft systems for geotechnical monitoring of pipelines in the Arctic. The Arctic Technology Conference, Copenhagen, Curran Associates, Inc., 948-954.

8. Dashevskii Yu.A., Nevedrova N.N., Zhirova N.V. (2000) Integral conductivity of the section as an indicator of the stressed state of the medium in active electromagnetic monitoring at the South Baikal predictive polygon. Dokl. RAN, 370(6), 807-809. (In Russ.)

9. Deev E.V., Nevedrova N.N., Zol’nikov I.D., Rusanov G.G., Ponomarev P.V. (2012) Geoelectrical studies of the deposits of the Chui basin (Mountain Altai). Geol. Geofiz., 53(1), 120-139. (In Russ.)

10. Del’vo D., Tenissen K., Van-der-Meier R., Berzin N.A. (1995) Dynamics of formation and paleostress during the formation of the Chuisko-Kurai depression in the Mountain Altai: tectonic and climatic control. Geol. Geofiz., 36(10), 31-51. (In Russ.)

11. Dobretsov N.L., Buslov M.M., de Grave I., Sklyarov E.V. (2013) Interrelationship of magmatic, sedimentary, and accretion-collision processes on the Siberian Platform and its folded framing. Geol. Geofiz., 54(10), 1451-1471. (In Russ.)

12. Dostavalova M.S., Shitov A.V. (2011) The influence of meteorological characteristics and geodynamic activity on the regime of hydro-genic icing formation in the Mountain Altai. Georisk, (4), 36-43. (In Russ.)

13. Efremov V.N. (2017) Opportunities for registering geophysical anomalies from thawed aquifer zones and horizons in permafrost rocks. Kriosfera Zemli, XXI(6), 129-133. (In Russ.) doi: 10.21782/KZ1560-7496-2017-6(129-133

14. Emanov A.F., Emanov A.A., Fateev A.V., Shevkunova E.V., Podkorytova V.G., Durachenko A.A., Korabel’shchikov D.G., Gladyshev E.A. (2021) Results of seismic monitoring of various regions of Russia. Altai and Sayans. Earthquakes in Russia in 2019. Obninsk, FiTs EGS RAN Publ., 37-44. (In Russ.)

15. Fukui K., Fujii Y., Mikhailov N., Ostanin O., Iwahana G. (2007) The lower limit of mountain permafrost in the Russian Altai Mountains. Permafr. Periglac. Process., 18(2), 129-136. doi: 10.1002/ppp.585

16. Glinskikh V.N., Fedoseev A.A., Nikitenko M.N., Mikhailov I.V., Bukhtiyarov D.A. (2023) Designing field experiments to justify the technology of permafrost monitoring. Kriosfera Zemli, XXVII(4), 45-53. (In Russ.) doi: 10.15372/KZ20230405

17. Glinskikh V., Nechaev O., Mikhaylov I., Danilovskiy K., Olenchenko V. (2021) Pulsed Electromagnetic Cross-Well Exploration for Monitoring Permafrost and Examining the Processes of Its Geocryological Changes. Geosci., 11(2), 1-15. doi: 10.3390/geosciences11020060

18. Khabinov O.G., Chalov I.A., Vlasov A.A., Antonov E.Yu. (2009) System for interpreting sounding data using transient processes EMS. GEO-Siberia-2009. Novosibirsk, SGUGiT Publ., 108-113. (In Russ.)

19. Khrustalev L.N., Khilimonyuk V.Z. (2022) Forecasting emergency situations based on temperature monitoring data of permafrost near an underground oil pipeline. Krio sfera Zemli, XXVI(3), 12-20. (In Russ.) doi: 10.15372/KZ20220302

20. Lebedeva L.S., Baishev N.E., Pavlova N.A., Efremov V.S., Ogonerov V.V., Tarbeeva A.M. (2023) Temperature of rocks in the layer of annual heat turnover in the area of the spread of super-permafrost thawing in Central Yakutia. Kriosfera Zemli, XXVII(2), 3-15. (In Russ.) doi: 10.15372/KZ20230201

21. Logachev N.A. (1999) Main structural features and geodynamics of the Baikal rift zone. Fizich. Mezomekhanika, 2(1-2), 163-170. (In Russ.)

22. Lunina О.V., Gladkov A.V., Novikov I.S., Agatova A.R., Vysotskii E.M., Emanov A.A. (2008) Geometry of the fault zone of the 2003 Ms = 7.5 Chuya earthquake and associated stress fields, Gorny Altai. Tectonophysics, 453, 276-294. doi: 10.1016/j.tecto.2007.10.010

23. Maslennikov S.A. (1970f) Hydrogeological Conditions of the Chuya and Kurai Steppes Area (Southeastern Part of the Altai Mountains). Report of the Tarkhatinskaya Hydrogeological Party for 1966–1970. Novokuznetsk. (In Russ.)

24. Murzina E.V., Pospeev A.V., Buddo I.V., Sharlov M.V., Seminskii I.K., Misyurkeeva N.V., Shelokhov I.A. (2022) Opportunities of shallow non-stationary electromagnetic soundings for identifying gas hydrate accumulations in the cryolithozone of the northern regions of Western Siberia. Kriosfera Zemli, XXVI(2), 51-62. (In Russ.) doi: 10.15372/KZ20220204

25. Neradovskii L.G. (2017b) A simplified approach to studying frozen soils using remote electromagnetic sounding method. Geofizika, (2), 79-87. (In Russ.)

26. Neradovskii L.G. (2018) Quantitative assessment of the volu metric ice content of frozen soils using dipole electromagnetic profiling method. Led i Sneg, 58(1), 94-104. (In Russ.) doi: 10.15356/2076-6734-2018-1-94-104

27. Neradovskii L.G. (2013) Experience in studying the influence of temperature on the specific electrical resistance of frozen soils. Geofizika, (1), 67-70. (In Russ.)

28. Neradovskii L.G. (2017a) Regional model of the thermal field behavior in the cryolithozone of Eastern Siberia and the Far East: description in artificially created electromagnetic fields. Kriosfera Zemli, XXI(4), 12-22. (In Russ.) doi: 10.21782/KZ1560-7496-2017-4(12-22)

29. Nevedrova N.N., Dashevskii Yu.A. (2000) Connection of seismic regime with elements of active tectonics from data of electromagnetic soundings. Seismology in Siberia at the turn of the millennium. Novosibirsk, Publishing House of SB RAS, 173-178. (In Russ.)

30. Nevedrova N.N., Deev E.V., Ponomarev P.V. (2017) Identification of fault structures and their geoelectrical characteristics from resistivity method data in the epicentral zone of the Chui earthquake of 2003 (Mountain Altai). Geol. Geofiz., 58(1), 146-156. (In Russ.) doi: 10.15372/GiG20170110

31. Nevedrova N.N., Epov M.I., Antonov E.Yu., Dashevskii Yu.A., Duchkov A.D. (2001) Reconstruction of the Deep Structure of the Chuya Basin in the Altai Mountains Based on Electromagnetic Sounding Data. Geol. Geofiz., 42(9), 1399-1416. (In Russ.)

32. Nikitenko M.N., Glinskikh V.N., Mikhailov I.V., Fedoseev A.A. (2023) Mathematical modeling of impulse electromagnetic sounding signals for monitoring the state of permafrost rocks. Geol. Geofiz., 64(4), 591-600. (In Russ.) doi: 10.15372/GiG2022132

33. Olenchenko V.V., Kozhevnikov N.O., Antonov E.Yu., Pospeеva E.V., Potapov V.V., Shein A.N., Stefansenko S.M. (2011) Distribution of Permafrost Thickness in the Chuya Basin (Altai Mountains) Based on Electromagnetic Sounding Data. Kriosfera Zemli, 15(1), 15-22.

34. Pan’kova D.S., Olenchenko V.V., Tsibizov L.V., Kamnev Y.K., Shein A.N., Sinitskii A.I. (2023) Structure of the permafrost section within the Parisento station (Gydan Peninsula) based on geophysical data. Kriosfera Zemli, XXIV(2), 52-67. (In Russ.) doi: 10.21782/KZ1560-7496-2020-2(52-67)

35. Patrin A.A. (1991f) Results of Geophysical Exploration Work to Assess the Coal Potential of Cenozoic Deposits in the Arzhan, Mezhdurechensk, and Chuya Areas. Report of the Turgusun Party for 1989–1991. TGF, Gorno-Altaysk.

36. Pechkin A.S., Romanov A.N., Kalachev A.V., Krasnenko A.S. (2018) Seasonal dynamics of the temperature regime of tundra soils in the Nadym province. Nauchnyi Vestnik Yamalo-Nenetskogo Avtonomnogo Okruga, 1(98), 34-39. (In Russ.)

37. Razumov S.O. (2015) Assessment of current degradation rates of permafrost rocks, trends, and consequences of their development in the XXI century. Priorities of World Science: Experiment and Scientific Discussion. Kemerovo, Scientific Publishing Center “Otkrytie”, 39-44. (In Russ.)

38. Rogozhin E.A., Ovsyuchenko A.N., Marakhanov A.V., Ushanova E.A. (2007) Tectonic position and geological manifestations of the Altai earthquake. Geotektonika, (2), 3-22. (In Russ.)

39. Rusanov G.G., Vazhov S.V. (2014) Reference sections of Quaternary deposits in the Mountain Altai (Bele, Kubadru, Chagan). Biysk, FGBOU VPO “AGAO”, 163 p. (In Russ.)

40. Shalaginov A., Nevedrova N. (2024) Electromagnetic Monitoring During the Aftershock Period of the 2003 Chuya Earthquake in Gorny Altai: Measurement Technique and Results. Geomag. Aeron., 64(4), 569-580.

41. Shats M.M., Skachkov Yu.B. (2016) Climate of the North: Warming or Cooling? Klimat i Priroda, 2(19), 27-37. (In Russ.)

42. Turenko S.K., Druzhinina K.V. (2018) On the systematic approach to improving the effectiveness of cryolithozone object research using geophysical methods. Neft’ i Gaz, (2), 27-31. (In Russ.)

43. Zheleznyak M.N. (2005) Geothermal Field and Cryolithozone of the Southeastern Siberian Platform. Novosibirsk, Nauka Publ., 228 p.

44. http://eqru.gsras.ru

45. http://www.geotomosoft.com

46. http://zond-geo.ru


Review

For citations:


Nevedrova N.N., Ponomarev P.V., Sancha A.M., Shaparenko I.O. Impact of seismotectonic processes on the geoelectrical parameters of permafrost in the Altai mountains. LITHOSPHERE (Russia). 2025;25(6):1416-1427. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-6-1416-1427

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)