Integration of Sentinel radar and optical data for monitoring and analysis of floods on the example of the catastrophic floods of 2019 in Tulun
https://doi.org/10.24930/1681-9004-2025-25-6-1404-1415
EDN: OBJZBR
Abstract
Research subject. In 2019, the city of Tulun in the Irkutsk Oblast experienced devastating floods, causing significant damage to infrastructure and the population. Detailed analysis and monitoring are required.
Aim. Development and testing of a methodology for integrating data from Sentinel-1 and 2 satellites for effective flood monitoring, analysis of their dynamics, and assessment of suitability for identifying flooded areas.
Materials and methods. Images from Sentinel-1 radar satellites and Sentinel-2 optical satellites were used. Data processing was carried out using SNAP and Global Mapper, including geometric correction, filtering, and data integration. Emphasis was placed on temporal synchronization, spatial resolution unification, and weighted summation methods.
Results. The study revealed significant changes in the dynamics of the water surface area from 2017 to 2024, especially in 2019. The flooded area ranged from 3.252 to 12.018 km2, with an average value of 4.645 km2. Data integration significantly enhanced monitoring accuracy.
Conclusions. The integration of Sentinel-1 and Sentinel-2 data improved the accuracy of flood scale assessments, highlighting the importance of a comprehensive approach. The results can be used to improve risk management strategies and develop damage reduction measures, as well as to provide more complete and reliable information for decision-making.
About the Authors
A. A. YuryevRussian Federation
Anton A. Yuryev
664033; 128 Lermontov st.; 664033; 1 Ulan-Batorskaya st.; Irkutsk
E. P. Dushkin
Russian Federation
Egor P. Dushkin
664033; 128 Lermontov st.; Irkutsk
A. A. Rybchenko
Russian Federation
Artem A. Rybchenko
664033; 128 Lermontov st.; 664033; 1 Ulan-Batorskaya st.; Irkutsk
References
1. Drusch M., Del Bello U., Carlier S., Colin O., Fernandez V., Gascon F., Hoersch B., Isola C., Laberinti P., Martimort P., Meygret A., Spoto F., Sy O., Marchese F., Bargellini P. (2012) Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ., 120, 25-36.
2. Dugarova G.B. (2021) Analysis and evaluation of flood impact in Tulun (Irkutsk region). ECO, (1), 130-150. (In Russ.)
3. Fernandez H.M., Granja-Martins F., Dziuba O., Pereira D.A.B., Isidoro J.M.G.P. (2023) Comparison of Ratioing and RCNA Methods in the Detection of Flooded Areas Using Sentinel 2 Imagery (Case Study: Tulun, Russia). Sustainability, 15, 10233-10248.
4. Georgievskii V.Yu., Greck E.A., Lobanova A.G., Molchanova T.G. (2020) Formation conditions for the catastrophic flood of 2019 on the Iya river and assessment of its characteristics. Geografiya i Prirodn. Resursy, (4), 86-94. (In Russ.)
5. Kichigina N.V. (2020) Flood hazard within the basins of the left tributaries of the Angara. Geografiya i Prirodn. Resursy, 41(4), 45-55. (In Russ.)
6. Makar’eva O.M., Nesterova N.V., Fedorova A.D., Shikhov A.N., Vinogradova Т.А. (2020) Modeling of the summer 2019 disastrous floods on the Iya river (Irkutsk oblast). Geografiya i Prirodn. Resursy, (4), 66-76. (In Russ.)
7. Motovilov Yu.G., Gel’fan A.N., Polyanin V.O. (2021) Сatastrophic floods in the Angara river basin in 2019: modeling the conditionsof formation and water regime of rivers. Izv. RAN. Ser. geogr., 85(2), 302-316. (In Russ.)
8. Nagler T., Rott H., Hetzenecker M., Wuite J., Potin P. (2015) The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations. Remote Sens., 7(7), 9371-9389.
9. Opekunova M.Y., Kichigina N.V., Rybchenko A.A., Silaev A.V. (2023) Channel Deformations and Hazardous Processes of the Left-Bank Tributaries of The Angara River (Eastern Siberia). Water, 15(2), 291-312.
10. Phiri D., Simwanda M., Salekin S., Nyirenda V.R., Murayama Y., Ranagalage M. (2020) Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens., 12(14), 2291-2326.
11. Plotnikova M.A., Khlebnikova E.P. (2020) Study of methods for identifying territorial changes by multi-time satellite images. Interexpo GEO-Siberia, 6(2), 48-58. (In Russ.)
12. Potin P., Rosich B., Grimont P., Miranda N., Shurmer I., O’Connell A., Torres R., Krassenburg M. (2016) Sentinel-1 Mission Status. Proc. of EUSAR 2016: 11<sup>th</sup> European Conference on Synthetic Aperture Radar. Hamburg, Germany, 1-6.
13. Proshin A.A., Loupian E.A., Balashov I.V., Kashnitskiy A.V., Burtsev M.A. (2016) Unified satellite data archive management platform for remote monitoring systems development. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 13(3), 9-27. (In Russ.)
14. Reshetilo N.S., Khlebnikova E.P. (2021) Possibility of using remote sensing data for monitoring water objects. Interexpo GEO-Siberia, 6, 248-255. (In Russ.)
15. Runova Y.M., Stepanova O.A. (2024) An analysis of the dynamics of the vegetation index of green spaces in Irkutsk region cities during the period of vegetation activity. J. Agricult. Environ., 1(41). (In Russ.) doi: 10.23649/JAE.2024.41.11
16. Shalikovskii A.V., Lepikhin A.P., Tiunov A.A., Kurganovich K.A., Morozov M.G. (2019) The 2019 Floods in Irkutsk Region. Vodnoe Khozyaistvo Rossii, (6), 48-65. (In Russ.)
17. Torres R., Snoeij P., Geudtner D., Bibby D., Davidson M., Attema E., Potin P., Rommen B., Floury N., Brown M., Traver I.N., Deghaye P., Duesmann B., Rosich B., Miranda N., Bruno C., L’Abbate M., Croci R., Pietropaolo A., Huchler M., Rostan F. (2012) GMES Sentinel-1 mission. Remote Sens. Environ., 120, 9-24.
18. Voronova A.E., Rublev I.V., Solov’eva I.A., Panov D.Yu., Gordeeva O.S., Batanov D.V., Zav’yalova D.Yu., Kostornaya A.A. (2020) Satellite observation of extreme flooding in the Irkutsk Region in 2019. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 17(1), 263-266. (In Russ.)
Review
For citations:
Yuryev A.A., Dushkin E.P., Rybchenko A.A. Integration of Sentinel radar and optical data for monitoring and analysis of floods on the example of the catastrophic floods of 2019 in Tulun. LITHOSPHERE (Russia). 2025;25(6):1404-1415. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-6-1404-1415. EDN: OBJZBR





































