Preview

LITHOSPHERE (Russia)

Advanced search

Amphibolites of the Central zone of metamorphism of the Rai-Iz massif (Polar Urals)

https://doi.org/10.24930/1681-9004-2025-25-6-1324-1349

Abstract

   Research subject. The material composition, formation conditions, and age of amphibolites of the Central zone of metamorphism (CZM) of the Rai-Iz massif.

   Materials and methods. Microprobe studies of minerals were conducted
using a Cameca-SX100 microanalyzer; the content of petrogenic elements was determined by an X-ray multichannel spectrometer CPM-35; the REE content was determined by a mass spectrometer with inductively coupled plasma NexION 300S in the Collective Use Center “Geoanalitik”, Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences. 40Ar/39Ar dating was carried out at the Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences according to A.V. Travin’s method. Results. The petrography and geochemistry of the amphibolites of the CZM Rai-Iz massif were studied; the parameters of their metamorphism were established, and the age of 40Ar/39Ar was determined. Two types of amphibolites were identified: garnet amphibolites, epidote-garnet amphibolites, and clinopyroxene-amphibole and amphibole-phlogopite-garnet rocks. The main minerals were found to be amphibole and
garnet. Amphibole corresponds to edenite, pargasite, and ferropargasite. In some amphibole samples, chemical zonation was established, manifested in the depletion of the marginal parts of Al2O3 and FeO grains relative to the central ones, while the MgO content increased from the center to the edge. Garnets from garnet and epidote-garnet amphibolites exhibited an almandine-grossular composition with pyrope (3–16 %) and spessartine (3–13 %) components; in amphibole-phlogopite-garnet rocks, garnet demonstrated an almandine–pyrope composition. In the pomegranate, the following chemical zonation was established: the FeO content increases from the center to the edge of the grains, while the MnO content decreases. The age of amphibolites determined by the 40Ar/39Ar method (405.2 ± 5.4 Ma) corresponds to the Lower Devonian. The averaged formation parameters of amphibole-bearing rocks correspond to P = 6–13 kbar, T = 430–860° C, and to the boundary of amphibolite and greenschist facies and the boundary of amphibolite and granulite facies. REE spectra in the studied rocks, normalized relative to chondrite, showed the predominance of heavy lanthanides over light ones. The character of REE distribution is close to N-MORB basalts.

   Conclusion. The studied rocks formed at the boundary of the early and middle Devonian. Their formation was associated with regional metamorphism in the conditions of the onset of collision.

About the Authors

K. A. Dugushkina
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Kseniia A. Dugushkina

620110; 15 Academician Vonsovsky st.; Ekaterinburg



A. E. Bogomolova
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Anna E. Bogomolova

620110; 15 Academician Vonsovsky st.; Ekaterinburg



P. B. Shiryaev
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Pavel B. Shiryaev

620110; 15 Academician Vonsovsky st.; Ekaterinburg



N. N. Farrakhova
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Nadezhda N. Farrakhova

620110; 15 Academician Vonsovsky st.; Ekaterinburg



References

1. Bogdanova A.R. (2020) Celsian from garnet amphibolites of the Rai-Iz massif (Polar Urals). Vestn. Ural. otd. RMO, (17), 5-9. (In Russ.)

2. Bogdanova A.R., Vakhrusheva N.V., Shiryaev P.B. (2019) The main and rare-earth elements of amphibolites of the Rai-Iz massif (Polar Urals). Vestn. Ural. otd. RMO, (16), 5-13. (In Russ.)

3. Bogdanova A.R., Vakhrusheva N.V., Shiryaev P.B. (2022) Amphibolites of the Rai-Iz ultramafic massif (Polar Urals). Metallogeniya drevnikh i sovremennykh okeanov, 28, 175-180. (In Russ.)

4. Chashchukhin I.S., Votyakov S.L., Shchapova Yu.V. (2007) Crystallochemistry of chromeshpineli and oxytermo-barometry of ultramafites of folded areas. Ekaterinburg, IGG UrO RAN, 310 p. (In Russ.)

5. Chashchukhin I.S., Perevozchikov B.V., Tsaritsyn E.P. (1986) Hyperbasite metamorphism of the Rai-Iz massif (Polar Urals). Research on petrology and metallogeny of the Urals. (Ed. by A.M. Dymkin, G.B. Fershtatter). Sverdlovsk, UNTs AN SSSR, 49-75. (In Russ.)

6. Dobretsov N.L., Moldavantsev Yu.E., Kazak A.P., Ponomareva L.G., Savelyeva T.N., Savelyev A.A. (1977) Petrology and metamorphism of ancient ophiolites: Using the example of the Polar Urals and the Western Sayan. Novosibirsk, Nauka Publ., 221 p. (Tr. IGG SO AN SSSR, vyp. 368). (In Russ.)

7. Dobretsov N.L., Reverdatto V.V., Sobolev V.S., Sobolev N.V., Khlestov V.V. (1970) Facies of metamorphism. Moscow, Nedra Publ., 432 p. (In Russ.)

8. Fershtater G.B. (1990) An empirical plagioclase-hornblende barometer. Geokhimiya, (3), 328-335.

9. Glassley W. (1974) Geochemistry and tectonics of Crescent volcanic rocks, Olympic Peninsula, Washington. Geol. Soc. Amer. Bull., 85, 785-794.

10. Graham C.M., Powell R. (1984) A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California. J. Metamorf. Geol., 2(1), 33-42.

11. Hammarstrom J.M., Zen E.-An. (1986) Aluminium in hornblende: an empirical igneous geobarometer. Amer. Miner., 71(11/12), 1297-1313.

12. Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D. (2012) Nomenclature of the amphibole supergroup. Amer. Miner., 97(11), 2031-2048. doi: 10.2138/am.2012.4276

13. Holland T., Blundy J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol., 116, 433-447.

14. Ivanov K.S., Vakhrusheva N.V., Shiryaev P.B., Drill S.I., Stepanov A.E. (2024) On the Nature of the Kharamatolou Structure and the Ratio of the Amount of Ultramafic Rocks of the Voykar-Synya Massif to That of the Ray-Iz Massif, Polar Urals. Geodinamika i Tektonofizika, 15(3), 0758.

15. Jaques A.L., Blake D.H., Donchak P.J.T. (1982) Regional metamorphism in the Selwyn Range area, north-west Queensland. BMR J. Austral. Geol. Geophys., 7(3), 181-196.

16. Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Guo Y. (1997) Nomenclature of amphiboles. Canad. Miner., 35, 219-246.

17. Meng F., Shmelev V.R., Kulikova K.R., Ren Y. (2018) A red-corundum-bearing vein in the Rai-Iz ultramafic rocks, Polar Urals, Russia: the product of fluid activity in a subduction zone. Lithos, 320-321, 302-314. doi: 10.1016/j.lithos.2018.09.025

18. Moldavantsev Yu.E., Berlyand N.G., Kazak A.P. (1977) Section of the Earth’s crust of the Polar Urals according to geophysical data. Tr. VSEGEI, 240, 85-91. (In Russ.)

19. Morimoto N., Fabries J., Ferguson A.K., Ginzburg I.V., Ross M., Seifert F.A., Zussman J., Aoki K., Gottardi G. (1988) Nomenclature of pyroxenes. Amer. Miner., 73, 1123-1133.

20. Perchuk L.L., Lavrent’eva I.V. (1990) Some equilibria involving garnet, orthopyroxene and amphibole as geothermometers and geobarometers for metamorphic rocks. Experiment-89, Informative volume. (Ed. by V.A. Zharikov). Moscow, Nauka Publ., 44-45.

21. Powell R. (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revised. J. Metamorphic Geol., 3(3), 231-243.

22. Reverdatto V.V., Likhanov I.I., Polyansky O.P., Sheplev V.S., Kolobov V.Yu. (2017) Nature and models of metamorphism. Novosibirsk, SO RAN, 331 p. (In Russ.)

23. Rieder M., Cavazzini G., D’yakonov Yu.S., Frank-Kamenetskii V.A., Gottardi G., Guggenheim S., Koval P.V., Mueller G., Neiva A.M.R., Radoslovich E.W., Robert J.-L., Sassi F.P., Takeda H., Weiss Z., Wones D.R. (1998) Nomenclature of the micas. Canad. Miner., 36(3), 905-912.

24. Ronkin Yu.L., Pryamonosov A.P., Telegina T.V., Lepikhina O.P. (2000) Dunite-harzburgite and dunite-verlite-clinopyroxenite-gabbro complexes of the Polar Urals: REE and Sr-Nd constraints. Isotope dating of geological processes: new methods and results. Abstracts of the dokl. I Russian Conference on Isotope Geochronology. Moscow, GEOS, 302-305. (In Russ.)

25. Schmidt M.W. (1991) Experimental calibration of the Al-in-hornblende geobarometer at 650 °C, 3.5–13.0 kbar. Terra abstracts, 3(1), 30.

26. Shmelev V.R. (2011) Mantle ultrabasites of ophiolite complexes of the Polar Urals: petrogenesis and formation conditions. Petrology, 19(6), 618-640 (translated from Petrologiya, 19(6), 618-640). doi: 10.1134/S0869591111060038

27. Shmelev V.R., Arai S., Tamura A. (2018) The nature of the mantle substrate in ophiolites of the Polar Urals. Dokl. Earth Sci., 479(2), 472-476 (translated from Dokl. AN, 479(4), 442-446). doi: 10.1134/S1028334X18040098

28. Structure and Dynamics of the Lithosphere of Eastern Europe. Results of Studies under the EUROPROBE Programme. (2006) (Ed by N.I. Pavlenkova). Moscow, Geokart Geos, 736 p. (In Russ.)

29. Structure, evolution and minerageny of the Rai-Iz hyperbasite massif. (1990) (Ed. by V.N. Puchkov, D.S. Steinberg). Sverdlovsk, UrO RAN, 228 p. (In Russ.)

30. Sun S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Spec. Publ., 42, 313-345.

31. The Petrographic Code of Russia. Igneous, metamorphic, metasomatic, and impact formations. (2008) 2<sup>nd</sup> ed., revised and expanded. St.Petersburg, VSEGEI, 200 p. (In Russ.)

32. The State Geological Map of the Russian Federation. (2013) Scale 1:200 000. 2<sup>nd</sup> ed. The Polar-Ural series. Sheet Q-41-XII. An explanatory note. Moscow, VSEGEI. (In Russ.)

33. Travin A.V., Yudin D.S., Vladimirov A.G., Khromykh S.V., Volkova N.I., Mekhonoshin A.S., Kolotilina T.B. (2009) Thermochronology of the Chernorud granulite zone, Ol’khon region, Western Baikal area. Geochem. Int., 47(11), 1107-1124 (translated from Geokhimiya, (11), 1181-1199). doi: 10.1134/S0016702909110068

34. Vakhrusheva N.V. (1996) Metamorphism of chromite-bearing hyperbasites of the Polar Urals. Cand. geol. and min. sci. diss. Ekaterinburg, UGGGA, 24 p. (In Russ.)

35. Vakhrusheva N.V., Ivanov K.S., Puchkov V.N., Shiryaev P.B. (2023) Subalkaline basaltoids in ultramafic rocks of the Rai-Iz massif (Polar Urals) and their petrogenetic significance. Dokl. Earth Sci., 509(2), 203-208 (translated from Dokl. AN. Nauki o Zemle, 509(2), 208-214). doi: 10.1134/S1028334X22601985

36. Vakhrusheva N.V., Ivanov K.S., Stepanov A.E., Shokalskiy S.P., Azanov A.N., Hiller V.V., Shiryaev P.B. (2016) Plagioclasites from chromite-bearing ultramafic rocks of the Rai-Izh massif. Lithosphere (Russia), (5), 134-145. (In Russ.)

37. Vakhrusheva N.V., Shiryaev P.B., Stepanov A.E., Bogdanova A.R. (2017) Petrology and chromite content of the Ray-Iz ultrabasic massif (Polar Urals). Ekaterinburg, IGG UrO RAN, 265 p. (In Russ.)

38. Vasiliev N.V., Udoratina O.V., Skorobogatova N.V., Borodulin G.P. (2012) Micas of the Taikeu deposit (Polar Urals): composition and classification issues. Vestn. IG Komi NTs UrO RAN, 1(205), 9-14. (In Russ.)

39. Warr L.N. (2021) IMA–CNMNC approved mineral symbols. Mineral. Mag., 85, 291-320.

40. Wells P.R.A. (1979) P-T conditions in the Moines of the Central Highlands, Scotland. J. Geol. Soc. London, 136, 663-671. doi: 10.1144/gsjgs.136.6.0663

41. Zavaritsky A.N. (1932) The Ray-Iz peridotite massif in the Polar Urals. Moscow; Leningrad, ONTI, 221 p. (In Russ.)

42. Zhang H., Hou Z., Rolland Y., Santosh M. (2022) The cold and hot collisional orogens: Thermal regimes and metallogeny of the Alpine versus Himalayan-Tibetan belts. Ore Geol. Rev., 141, 104671. doi: 10.1016/j.oregeorev.2021.104671


Review

For citations:


Dugushkina K.A., Bogomolova A.E., Shiryaev P.B., Farrakhova N.N. Amphibolites of the Central zone of metamorphism of the Rai-Iz massif (Polar Urals). LITHOSPHERE (Russia). 2025;25(6):1324-1349. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-6-1324-1349

Views: 70


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)