Preview

LITHOSPHERE (Russia)

Advanced search

Mineralogical and geochemical zoning and mass transfer between the Khudolaz complex water-saturated gabbro and the Zilair Formation sandstones (Vostochnyi Buskun, Southern Urals)

https://doi.org/10.24930/1681-9004-2025-25-6-1298-1323

EDN: PLPJHJ

Abstract

   Research subject. The contact aureole rocks of the Vostochnyi Buskun multiphase gabbroic intrusion of the Khudołaz differentiated complex (Southern Urals).

   Aim. To study geochemical interactions between the magmatic body and host volcanogenic-sedimentary rocks, to determine the physicochemical conditions of metamorphism and metasomatism, to identify mineralogical and geochemical zoning of the contact aureole, and to assess the metallogenic potential of the rocks.

   Materials and methods. Minerals were studied by optical and scanning electron microscopy; the bulk composition of rocks was determined by XRF and ICP–MS. Contact metamorphism temperatures were determined using biotite and chlorite geothermometers.

   Results. Several types of gabbroids in the Vostochnyi Buskun massif have been identified. The contact aureole of the massif is composed of three main types of rocks, corresponding to the interaction between taxitic leucogabbro and host volcanogenic-terrigenous rocks: hypersthene and clinopyroxene hornfelses in direct contact with the intrusion rocks, and chl ± ms ± bt hornfelses, forming the greater part of the exocontact. Clinopyroxene metasomatites, in comparison with more distant from the contact hornfelses, are characterized by an addition of Ca and Sr, and removal of Ti, Fe, Mg, Li, Rb, and Ba. The mineral and chemical composition of hypersthene hornfelses correspond to mafic igneous rocks and show similarities with beerbachites. Poor ore mineralization in the contact aureole rocks is represented by ilmenite, copper, and iron sulfides, including platinum-bearing pyrrhotite in chlorite-mica hornfelses.

   Conclusion. The Vostochnyi Buskun massif was formed via at least three petrogenetic phases, which resulted in the multi-stage metamorphic and metasomatic alteration of host rocks. The contact aureole formation is associated with injection of second-phase fluid-saturated taxitic olivine-hornblende leucogabbro, which were in direct contact with the host volcanogenic-sedimentary strata. The contact aureole formed in two stages: (1) a high-temperature stage (526–616 °C) accompanied by pegmatoid segregations in gabbro, hypersthene, clinopyroxene, and biotite-bearing hornfelses; and (2) a low-temperature stage (253–458 °C), which is associated with dolerite dikes and propylitic quartz-chlorite-albite veins, as well as chlorite replacing biotite. The presence of chlorine-containing apatite and amphibole indicate the participation of chlorine-bearing fluid in metasomatism, while the features of the mass transfer of ore elements indicate the absence of sulfide ore bodies under the Vostochnyi Buskun massif contact zone.

About the Authors

E. I. Mikheev
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Evgeny I. Mikheev

630090; 3 Academician Koptyug av.; Novosibirsk



I. R. Rakhimov
Institute of Geology, UFRC RAS; A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Ildar R. Rakhimov

450077; 16/2 Karl Marx st.; Ufa; 620110; 15 Academician Vonsovsky st.; Ekaterinburg



References

1. Barton M.D., Ilchik R.P., Marikos M.A. (1991) Ch. 7. Metasomatism. Contact metamorphism. (Eds D.M. Kerrick). Berlin, Boston: De Gruyter, 321-350. doi: 10.1515/9781501509612-010

2. Boynton W.V. (1984) Cosmochemistry of Rare Earth Elements: meteorite studies. (Ed. P. Henderson). Rare Earth Element Geochemistry. N. Y.: Elsevier, 63-114. doi: 10.1016/B978-0-444-42148-7.50008-3

3. Bucher K. (2023) Petrogenesis of Metamorphic Rocks. Springer, 467 p. doi: 10.1007/978-3-031-12595-9

4. Buchkovskii E.S., Perminov G.M., Kaltashov A.P., Karavaev I.N. (1971f) Evaluation of nickel-bearing capacity of basic intrusions of the Khudolazovsky complex. Report on the results of work carried out by the Khudolazovsky geological prospecting party in the northern part of the Baimaksky and southern part of the Abzelilovsky districts of the Bashkir ASSR. Ufa, GosGeol-Fond. V. 1. Inv. No. 8235. (In Russ.)

5. Buchkovskii E.S., Perminov G.M., Krestinin B.A., Karavaev I.N., Petrov Yu.N. (1974f) Evaluation of nickel-bearing capacity of basic intrusions of the Khudolazovsky complex. Report on the object “Khudolazovskaya syncline. Prospecting for 1:50 000 scale sulfide copper-nickel ores” : in 8 volumes. Ufa, GosGeolFond. V. 1, 240 p.

6. Chashchin V.V. (2007) Mineral assemblages and genesis of hornfelses in the outer contact zone of the Khibina Massif, Kola Peninsula, Russia. Geochem. Int., 45(1), 15-31 (translated from Geokhimiya, (1), 19-37). doi: 10.1134/S0016702907010028

7. Classification and nomenclature of metamorphic rocks. Reference manual. (1992) (Eds N.L. Dobretsov, O.A. Bogatikov, O.M. Rosen). Novosibirsk, OIGGM Publ., 205 p. (In Russ.)

8. Crerar D.A., Susak N.J., Borcsik M., Schwartz S. (1978) Solubility of the buffer assemblage pyrite + pyrrhotite + magnetite in NaCl solutions from 200 to 350 °C. Geochim. Cosmochim. Acta, 42(9), 1427-1437. doi: 10.1016/0016-7037(78)90048-0

9. Dasgupta S., Bhowmik S.K. (2021) Types of Metamorphism. Encyclopedia of Geology, 2<sup>nd</sup> ed. (Eds D. Alderton, S.A. Ellias). London, Academic Press, 354-365. doi: 10.1016/B978-0-08-102908-4.00114-4

10. Fazliakhmetov A.M. (2021) Frasnian greywackes of the Khudolaz Syncline. Message 3. Brief description of geochemistry. Geol. Vestnik, (2), 83-105. (In Russ.) doi: 10.31084/2619-0087/2021-2-7

11. Frolova T.I., Burikova I.A. (1997) Magmatic formations of modern geotectonic settings: Tutorial. Moscow, MGU Publ., 320 p. (In Russ.)

12. Goryachev N.A. (1998) Geology of Mesozoic Gold Quartz Vein Belts in Northeastern Asia. Magadan, SVKNII DVO RAN Publ., 210 p. (In Russ.)

13. Kelemen P.B., Hanghøj K., Greene A.R. (2014) One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry (Second Ed.). (Eds H.D. Holland, K.K. Turekian). Elsevier, 749-806. doi: 10.1016/B978-0-08-095975-7.00323-5

14. Kitsault Molybdenum Project. British Columbia, Canada. NI 43-101 Technical Report on Feasibility Study. (2010) (Prepared by: G. Christie, G. Kulla, R. Ulansky, T. Lipiec, P. Healy, M. Levy, B. Borntraeger). Project No.: 165003, 208 p.

15. Kokshina L.V. (2013) Postdiagenetic transformations of petroclastic graywackes (on the example of the Middle Paleozoic of the Southern Urals and the south of Western Siberia). Abstr. of Cand. Geol.-Min. Sci. Ekaterinburg, 23 p. (In Russ.)

16. Lanari P., Wagner T., Vidal O. (2014) A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O: applications to P–T sections and geothermometry. Contrib. Mineral. Petrol., 167, 968. doi: 10.1007/s00410-014-0968-8

17. Liu Y., Brenan J. (2015) Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO<sub>2</sub>–fS<sub>2</sub> conditions. Geochim. Cosmochim. Acta, 159, 139-161. doi: 10.1016/j.gca.2015.03.021

18. Lu Z.Y., Jeffrey M.I., Zhu Y., Lawson F. (2000) Studies of pentlandite leaching in mixed oxygenated acidic chloride-sulfate solutions. Hydrometallurgy, 56(1), 63-74. doi: 10.1016/S0304-386X(00)00067-0

19. Malyukova N.N. (2018) Rare-earth mineralization distribution by ore types at exploration horizons of Kutessai-II deposit. Mezhdunar. Nauchno-Issledov. Zhurnal, 6-1(72), 97-104. (In Russ.) doi: 10.23670/IRJ.2018.72.6.019

20. Mikheev E.I., Rakhimov I.R., Shaparenko E.O., Soroka E.I. (2025) Metasomatism and REE mineralization of the Zilair Formation sedimentary rocks in the Khudolaz complex gabbro massif exocontact zone (Chebarkul area, Southern Urals). Izv. Tomsk. Politekhn. Universiteta. Inginiring Georesursov, 336(1), 123-138. (In Russ.) doi: /10.18799/24131830/2025/1/4584

21. Montin S.A., Levina N.B., Batrak I.E. et al. (2015) State Geological Map of the Russian Federation. Scale 1:200,000. Second edition. South Ural Series. Sheet N-40-XXIX – Sibay. Explanatory note. Moscow, MF VSEGEI Publ., 218 p. + 14 incl. (Ministry of Natural Resources of Russia, Federal Agency for Subsoil Use, Subsoil Use Administration for the Chelyabinsk Region, FSUE “Aerogeology”). (In Russ.)

22. Rakhimov I.R., Ankusheva N.N., Kholodnov V.V. (2020) Co-Pd-Ag and Th-REE mineralization of host rocks from the exocontact zone of Tashly-Tau massif, Khudolaz complex (South Urals): ore sources and fluid inclusions data. Izv. Tomsk. Politekhn. Universiteta. Inginiring Georesursov, 331(8), 77-91. (In Russ.) doi: 10.18799/24131830/2020/7/2770

23. Rakhimov I.R., Ankusheva N.N., Samigullin A.A., Shanina S.N. (2023) Origin and Evolution of Ore-Forming Fluids at the Small-Sized Gold Deposits in the Khudolaz Area, Southern Urals. Minerals, 13(6), 781. doi: 10.3390/min13060781

24. Rakhimov I.R., Vasil’ev A.M., Samigullin A.A. (2024) Formation of the Bilyan-Tau gold ore occurrence (Khudolaz trough, Southern Urals). Proceedings of Voronezh State University. Ser.: Geology, (3), 21-31. (In Russ.) doi: 10.17308/geology/1609-0691/2024/3/21-31

25. Rakhimov I.R., Vishnevskiy A.V., Saveliev D.E. (2021) Geochemical evolution of PGE-sulfide mineralization of the Khudolaz differentiated complex in the South Urals: The role of R-factor and hydrothermal alteration. Ore Geol. Rev., 104411. doi: 10.1016/j.oregeorev.2021.104411

26. Reverdatto V.V. (1970) Facies of contact metamorphism. (Ed. V.S. Sobolev). Moscow, Nedra Publ., 272 p. (In Russ.)

27. Reverdatto V.V., Likhanov I.I., Polyanskii O.P., Sheplev V.S., Kolobov V.Yu. (2017) The nature and models of metamorphism. (Ed. N.V. Sobolev). Novosibirsk, Publishing House of the Siberian Branch of the Russian Academy of Sciences, 331 p. (In Russ.)

28. Salikhov D.N., Pshenichnyi G.N. (1984) Magmatism and mineralization of the early consolidation zone of the Magnitogorsk eugeosyncline. Ufa, BFAN SSSR Publ., 112 p. (In Russ.)

29. Semenov I.V., Yakovleva O.M. (1994) Hornfelses of the southeastern framing of the gabbro massif of Mount Kumba – apo-gabbro blastocataclasites or exocontact apo-volcanogenic formations? Tr. IGG UB RAS, vyp. 141, 29-34. (In Russ.)

30. Seravkin I.B., Znamenskii S.E., Kosarev A.M. (2001) Fracture tectonics and ore content of the Bashkir Trans-Urals. Ufa, Poligrafkombinat Publ., 318 p. (In Russ.)

31. Simakov S.K., Dolivo-Dobrovolsky D.V. (2009) PT Quick: the Program for Estimation of Equilibrium Parameters for Mineral Assemblages Using Methods of Classical Geothermobarometry.

32. Sklyarov E.V., Kargopolov S.A., Lavrenchuk A.V., Pushkarev E.V., Semenova D.V. (2023) Geology, Petrology, and Mineralogy of Hornfels-like Rocks (Beerbachite) in the Early Paleozoic Olkhon Collisional Orogen (West Baikal Area, Russia). Minerals, 13(11), 1370. doi: 10.3390/min13111370

33. Sklyarov E.V., Lavrenchuk A.V., Fedorovsky V.S., Gladkochub D.P., Donskaya T.V., Kotov A.B., Mazukabzov A.M., Starikova A.E. (2020) Regional, Contact Metamorphism, and Autometamorphism of the Olkhon Terrane (West Baikal Area). Petrology, 28, 47-61 (translated from Petrologiya, 28(1), 55-71). doi: 10.1134/S0869591120010051

34. Sun S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc., Lond., Spec. Publ., 42, 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

35. Taylor S.R., McLennan S.M. (1985) The continental crust: its composition and evolution. Oxford, UK; Blackwell, 349 p. doi: 10.1002/gj.3350210116

36. Tsabadze Dzh.E., Gufranov R.A., Aleksandrov Yu.A., Tsabadze G.A., Zharikov V.G., Marchenko T.A., Kavyeva M.Kh. (1984f) Geological structure of the Sibay ore region. Report on additional geological study at a scale of 1:50,000 of the Sibay area (tablets N-40-106-B-v, g; N-40-118-A; N-40-118-B; N-40-130-A-a, b) for 1980–1984 in 5 volumes. Ufa, V. 1, 271 p. (In Russ.)

37. Vrublevskaya T.T., Tsygankov A.A., Orsoev D.A. (2003) Contact processes in the Nyurundukan ultramaficmafic massif (northern Baikal region). Russ. Geol. Geophys., 44(3), 205-223 (translated from Geol. Geofiz., 44(3), 207-223).

38. Warr L.N. (2021) IMA–CNMNC approved mineral symbols. Mineral. Mag., 85(3), 291-320. doi: 10.1180/mgm.2021.43

39. Winter J.D. (2014) Principles of Igneous and Metamorphic Petrology. 2<sup>nd</sup> ed. Pearson: London, UK, 745 p.

40. Wu C.M., Chen H.X. (2015) Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites. Sci. Bull., 60(1), 116-121. doi: 10.1007/s11434-014-0674-y

41. Yudovich Ya.E., Ketris M.P. (2000) Fundamentals of Lithochemistry. St.Petersburg, Nauka Publ., 479 p. (In Russ.)

42. Zakharova A.A. (1982f) Petrology and metallogeny of the Early Carboniferous gabbro-plagiogranite formation on the eastern slope of the Southern Urals (Khudolazovsky complex). Scientific report on the topic “Conditions of formation and metamorphism of igneous complexes of the Southern Urals” : in 3 volumes. Ufa, IG BF AN SSSR Publ. V. 1, 429 p. (In Russ.)

43. Zane A., Weiss Z. (1998) A procedure for classifying rock-forming chlorites based on microprobe data. Rendiconti Lincei. Scienze Fisiche e Naturali, 9, 51-56. doi: 10.1007/BF02904455

44. Znamenskii S.E. (2009) Structural conditions for the formation of collisional gold deposits on the eastern slope of the Southern Urals. Ufa, Gilem Publ., 348 p. (In Russ.)

45. Zou C. (2013) Chapter 8 – Oil and Gas in Metamorphic Reservoirs. Unconventional Petroleum Geology. (Ed. C. Zou). Elsevier, 275-305. doi: 10.1016/B978-0-12-397162-3.00008-6


Review

For citations:


Mikheev E.I., Rakhimov I.R. Mineralogical and geochemical zoning and mass transfer between the Khudolaz complex water-saturated gabbro and the Zilair Formation sandstones (Vostochnyi Buskun, Southern Urals). LITHOSPHERE (Russia). 2025;25(6):1298-1323. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-6-1298-1323. EDN: PLPJHJ

Views: 69


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)