Preview

LITHOSPHERE (Russia)

Advanced search

Heat losses from buildings and formation of underground urban heat islands.

https://doi.org/10.24930/2500-302X-2025-25-5-1201-1215

Abstract

Research subject. The underground temperature anomaly created by a typical office building. Aim . To conduct theoretical and experimental studies of conductive heat losses from a building, including those to the underground environment. To assess the morphology and evolution of the underground temperature anomaly and additional heat storage in the sub surface. To evaluate the economic significance and environmental consequences of such a temperature anomaly. Materials and methods. Experimental data were collected by monitoring temperatures and heat fluxes along the internal and external surfaces of the main structural elements of the building of the Institute of Geophysics of the Ural Branch of the Russian Academy of Sciences (Yekaterinburg, Russia). These data were used to calculate the resistance to heat transfer (reciprocal of thermal transmittance) of the building structural elements, annual fluctuations in heat fluxes, and annual heat losses. Numerical simulation was used to describe the distribution, intensity, and evolution of the underground temperature anomaly. Results. The building loses 83% of its heat through external surfaces (walls, windows, roof), with only 17% being lost through the basement walls and floor. Over 40 years of the building operation, the total losses amount to 133 TJ and are determined by the low thermal insulation properties of its structural materials. According to the simulation results, the heat fluxes that penetrated the ground have formed an underground temperature anomaly, which has thus far spread to 15 m to the sides of the building and to 40 m into the depth (by the 2 K isoanomaly). The excess heat storage retained in the subsurface during the period of 40 years amounts to 3.2 TJ or 2.4% of the total conductive heat loss. Conclusions. Heat losses from buildings play a key role in the formation of underground urban heat islands, exceeding the climatic contribution of global warming by 36 times. At the same time, the economic importance of the thermal energy accumulated in the underground environment is low, and the environmental consequences of warming of the sub surface are negligible.

About the Authors

D. Yu. Demezhko
Institute of Geophysics, UB RAS
Russian Federation

Dmitry Yu. Demezhko



B. D. Khatskevich
Institute of Geophysics, UB RAS
Russian Federation

Bogdan D. Khatskevich



N. R. Fakaeva
Institute of Geophysics, UB RAS
Russian Federation

Nelly R. Fakaeva



A. A. Gornostaeva
Institute of Geophysics, UB RAS
Russian Federation

Anastasiya A. Gornostaeva



A. N. Antipin
Institute of Geophysics, UB RAS
Russian Federation

Alexander N. Antipin



References

1. Adushkin V.V., Spivak A.A., Ovchinnikov V.M., Solov’yev S.P., Spungin V.G. (1995) Geophysical control on the geophysical fields of megapolise. Geoekologiya, (2), 44-56. (In Russ.)

2. Anokhin A.A., Zhitin D.V., Krasnov A.I., Lachininsky S.S. (2014) Modern trends in population quantity dynamics of cities in Russia. Vestn. Sankt-Peterburgskogo un-ta. Nauki o Zemle, (4), 167-179. (In Russ.)

3. Arning E., Kölling M., Schulz H.D., Panteleit B., Reich ling J. (2006) Einfluss oberflachennaher Warmegewinnung auf geochemische Prozesse im Grundwasserleiter. Grundwasser, 11(1), 27-39.

4. Attard G., Rossier Y., Winiarski T., Eisenlohr L. (2016) Deterministic modeling of the impact of undergroundstructures on urban groundwater temperature. Sci. Total Env., 572, 986-994. https://doi.org/10.1016/j.scitotenv.2016.07.229

5. Bayer P., Attard G., Blum P., Menberg K. (2019) The geothermal potential of cities Renew. Sustain. Energy Rev., 106, 17-30. https://doi.org/10.1016/j.rser.2019.02.019

6. Bayer P., Rivera J.A., Schweizer D., Schärli U., Blum P., Rybach L. (2016) Extracting past atmospheric warming and urban heating effects from borehole temperature pro files. Geothermics, 64, 289-299. http://doi.org/10.1016/j.geothermics.2016.06.011

7. Belousova A.P., Proskurina I.V. (2008) Principles of zoning a territory by the hazard risks of groundwater pollu tion. Water Res., 35(1) 108-119 (translated from Vodnye resursy, 35(1), 110-122). https://doi.org/10.1007/s11268-008-1013-y

8. Benz S.A., Bayer P., Blum P., Hamamoto H., Arimoto H., Taniguchi M. (2018) Comparing anthropogenic heat input and heat accumulation in the subsurface of Osa ka, Japan. Sci. Total Env ., 643, 1127-1136. https://doi.org/10.1016/j.scitotenv.2018.06.253

9. Benz S.A., Bayer P., Menberg K., Jung S., Blum P. (2015) Spatial resolution of anthropogenic heat fluxes into ur ban aquifers. Sci. Total Env., 524, 427-439. https://doi.org/10.1016/j.scitotenv.2015.04.003

10. Bidarmaghz A., Choudhary R., Soga K., Terrington R.L., Kessler H., Thorpe S. (2020) Large-scale urban underground hydro-thermal modelling – а case study of the Royal Borough of Kensington and Chelsea, London.Sci. Total Env., 700, 134955. https://doi.org/10.1016/j.scitotenv.2019.134955

11. Blum P., Menberg K., Koch F., Benz S.A., Tissen C., Hemmerle H., Bayer P. (2021) Is thermal use of groundwater a pollution? J. Contaminant hydrol., 239, 103791. https:// doi.org/10.1016/j.jconhyd.2021.103791

12. Brielmann H., Griebler C., Schmidt S.I., Michel R., Lueders T. (2009) Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiol. Ecol., 68(3), 273-286. https://doi.org/10.1111/j.1574-6941.2009.00674.x

13. Brons H.J., Griffioen J., Appelo C.A.J., Zehnder A.J.B. (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Res ., 25(6), 729-736.

14. Castiello G., Florio G., Grimaldi M., Fedi M. (2010) En hanced methods for interpreting microgravity anomalies in urban areas. First Break, 28(8), 93-98. http://doi.org/10.3997/1365-2397.28.8.40741

15. Chandler T.J. (1976) The Climate of the British Isles. Boston, Addison–Wesley Longman Ltd, 390 p.

16. Chu Z., Loria A.F.R. (2024) Modeling underground climate change across a city based on data about a building block. Sustain. Cities Soc., 114, 105775. https://doi.org/10.1016/j.scs.2024.105775

17. Dědeček P., Šafanda J., Rajver D. (2012) Detection and quantification of local anthropogenic and regional climatic transient signals in temperature logs from Czechia and Slovenia. Climatic change, 113, 787-801. https://doi.org/10.1007/s10584-011-0373-5

18. Demezhko D.Yu., Gornostaeva A.A., Khatskevich B.D., Vdovin A.G., Fakaeva N.R. (2024) Subsurface urban heat island in the city of Ekaterinburg. Lithosphere (Russia), 24(3), 566-581. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-3-566-581

19. Ferguson G., Woodbury A.D. (2004) Subsurface heat flow in an urban environment. J. Geophys. Res., 109, B02402. https://doi.org/10.1029/2003JB002715

20. Gornostaeva A.A., Demezhko D.Yu., Khatskevich B.D., Vdovin A.G., Fakaeva N.R. (2024) Influence of buildings on the subsurface thermal field of Ekaterinburg city. Geofizicheskie Protsessy i Biosfera, 23(2), 12-24. (In Russ.) https://doi.org/10.21455/GPB2024.2-2

21. Hähnlein S., Bayer P., Ferguson G., Blum P. (2013) Sustain ability and policy for the thermal use of shallow geo thermal energy. Energy Policy, 59, 914-925. https://doi.org/10.1016/j.enpol.2013.04.040

22. Hemmerle H., Ferguson G., Blum P., Bayer P. (2022) The evolution of the geothermal potential of a subsurface urban heat island. Env. Res. Lett., 17(8), 084018. https://doi.org/10.1088/1748-9326/ac7e60

23. Jung N., Paiho S., Shemeikka J., Lahdelma R., Airaksinen M. (2018) Energy performance analysis of an office building in three climate zones. Energy and Buildings, 158, 1023-1035. https://doi.org/10.1016/j.enbuild.2017.10.030

24. Kim S.W., Brown R.D. (2021) Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Env., 779, 146389. https://doi.org/10.1016/j.scitotenv.2021.146389

25. Koridalin V.E., Kuz’mina N.V., Osika V.I., Popov E.I., Tok makov V.A. (1985) Seismic noise of an industrial city. Dokl. AN SSSR, 280(5), 1094-1097. (In Russ.)

26. Lokoshchenko M.A. (2014) Urban ‘heat island’ in Moscow. Urban Climate, 10, 550-562. https://doi.org/10.1016/j.uclim.2014.01.008

27. Loria A.F.R., Thota A., Thomas A.M., Friedle N., Lautenberg J.M., Song E.C. (2022) Subsurface heat island across the Chicago Loop district: Analysis of localized drivers. Urban Climate, 44, 101211. https://doi.org/10.1016/j.uclim.2022.101211

28. Luo Z., Asproudi C. (2015) Subsurface urban heat island and its effects on horizontal ground-source heat pump potential under climate change. App. Thermal Eng., 90, 530-537. https://doi.org/10.1016/j.applthermaleng.2015.07.025

29. Menberg K., Bayer P., Zosseder K., Rumohr S., Blum P. (2013) Subsurface urban heat islands in German cities. Sci. Total Env., 442, 123-133. https://doi.org/10.1016/j.scitotenv.2012.10.043

30. Mohajerani A., Bakaric J., Jeffrey-Bailey T. (2017) The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manage., 197, 522-538. https://doi.org/10.1016/j.jenvman.2017.03.095

31. Oke T.R. (1973) City size and the urban heat island. At mospheric Env. (1967), 7(8), 769-779. https://doi.org/10.1016/0004-6981(73)90140-6

32. Previati A., Epting J., Crosta G.B. (2022) The subsurface urban heat island in Milan (Italy) – A modeling approach covering present and future thermal effects on ground water regimes. Sci. Total Env., 810, 152119. https://doi.org/10.1016/j.scitotenv.2021.152119

33. Schweighofer J.A., Wehrl M., Baumgärtel S., Rohn J. (2021) Detecting groundwater temperature shifts of a subsurface urban heat island in SE Germany. Water, 13(10), 1417. https://doi.org/10.3390/w13101417

34. Shuleikin V.N. (2015) Water vapor, atmospheric electricity, and radon transfer to the near-surface soil layers and the atmosphere. Izv. Atmos. Ocean. Phys. 51(7), 688-692 (translated from Geofizicheskie Protsessy i Biosfera,13(3), 31-41). https://doi.org/10.1134/S0001433815070087

35. Smith M., Hargroves K.C., Stasinopoulos P., Stephens R., Desha C., Hargroves S. (2007) Energy Transformed: Sustainable energy solutions for climate change mitigation. Brisbane, QUT ePrints, 600 p.

36. Spivak A.A., Loktev D.N., Rybnov Yu.S., Soloviev S.P., Kharlamov V.A. Geophysical fields of megapolis. Geo fizicheskie Protsessy i Biosfera, 15(2), 39-54 (In Russ.)

37. Stewart I.D., Krayenhoff E.S., Voogt J.A., Lachapelle J.A., Allen M.A., Broadbent A.M. (2021) Time evolution of the surface urban heat island. Earth’s Future, 9(10), p.e2021EF002178. https://doi.org/10.1029/2021EF002178

38. Taniguchi M. (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature–depth profiles. Water Resources Res., 29(7), 2021-2026. https://doi.org/10.1029/93WR00541

39. Tien P.W., Wei S., Liu T., Calautit J., Darkwa J., Wood C. (2021) A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand. Renewable Energy, 177, 603-625. https://doi.org/10.1016/j.renene.2021.05.155

40. Tzavali A., Paravantis J.P., Mihalakakou G., Fotiadi A., Stigka E. (2015) Urban heat island intensity: A literature review. Fresenius Envir. Bull., 24(12b), 4537-4554.

41. Vatin N.I., Nemova D.V., Rymkevich P.P., Gorshkov A.S. (2012) Influence of building envelope thermal protection on heat loss value in the building. Inzhenerno-stroitel’nyi Zhurnal, (8), 4-14. (In Russ.) https://doi.org/10.5862/MCE.34.1

42. Visser P.W., Henk K., Bense V., Emiel B. (2020) Impacts of progressive urban expansion on subsurface temperatures in the city of Amsterdam (The Netherlands). hydrogeol. J., 28(5), 1755-1772. https://doi.org/10.1007/s10040-020-02150-w

43. Westaway R., Scotney P.M., Younger P.L., Boyce A.J. (2015) Subsurface absorption of anthropogenic warming of the land surface: The case of the world’s largest brickworks (Stewartby, Bedfordshire, UK). Sci. Total Env., 508, 585-603. https://doi.org/10.1016/j.scitotenv.2014.09.109

44. Zhu K., Blum P., Ferguson G., Balke K.-D., Bayer P. (2010) The geothermal potential of urban heat islands. Environ. Res. Lett., 5, 044002. https://doi.org/10.1088/1748-9326/5/4/044002

45.


Review

For citations:


Demezhko D.Yu., Khatskevich B.D., Fakaeva N.R., Gornostaeva A.A., Antipin A.N. Heat losses from buildings and formation of underground urban heat islands. LITHOSPHERE (Russia). 2025;25(5):1201-1215. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-5-1201-1215

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)