Heat losses from buildings and formation of underground urban heat islands.
https://doi.org/10.24930/2500-302X-2025-25-5-1201-1215
Abstract
Research subject. The underground temperature anomaly created by a typical office building. Aim . To conduct theoretical and experimental studies of conductive heat losses from a building, including those to the underground environment. To assess the morphology and evolution of the underground temperature anomaly and additional heat storage in the sub surface. To evaluate the economic significance and environmental consequences of such a temperature anomaly. Materials and methods. Experimental data were collected by monitoring temperatures and heat fluxes along the internal and external surfaces of the main structural elements of the building of the Institute of Geophysics of the Ural Branch of the Russian Academy of Sciences (Yekaterinburg, Russia). These data were used to calculate the resistance to heat transfer (reciprocal of thermal transmittance) of the building structural elements, annual fluctuations in heat fluxes, and annual heat losses. Numerical simulation was used to describe the distribution, intensity, and evolution of the underground temperature anomaly. Results. The building loses 83% of its heat through external surfaces (walls, windows, roof), with only 17% being lost through the basement walls and floor. Over 40 years of the building operation, the total losses amount to 133 TJ and are determined by the low thermal insulation properties of its structural materials. According to the simulation results, the heat fluxes that penetrated the ground have formed an underground temperature anomaly, which has thus far spread to 15 m to the sides of the building and to 40 m into the depth (by the 2 K isoanomaly). The excess heat storage retained in the subsurface during the period of 40 years amounts to 3.2 TJ or 2.4% of the total conductive heat loss. Conclusions. Heat losses from buildings play a key role in the formation of underground urban heat islands, exceeding the climatic contribution of global warming by 36 times. At the same time, the economic importance of the thermal energy accumulated in the underground environment is low, and the environmental consequences of warming of the sub surface are negligible.
Keywords
About the Authors
D. Yu. DemezhkoRussian Federation
Dmitry Yu. Demezhko
B. D. Khatskevich
Russian Federation
Bogdan D. Khatskevich
N. R. Fakaeva
Russian Federation
Nelly R. Fakaeva
A. A. Gornostaeva
Russian Federation
Anastasiya A. Gornostaeva
A. N. Antipin
Russian Federation
Alexander N. Antipin
References
1. Adushkin V.V., Spivak A.A., Ovchinnikov V.M., Solov’yev S.P., Spungin V.G. (1995) Geophysical control on the geophysical fields of megapolise. Geoekologiya, (2), 44-56. (In Russ.)
2. Anokhin A.A., Zhitin D.V., Krasnov A.I., Lachininsky S.S. (2014) Modern trends in population quantity dynamics of cities in Russia. Vestn. Sankt-Peterburgskogo un-ta. Nauki o Zemle, (4), 167-179. (In Russ.)
3. Arning E., Kölling M., Schulz H.D., Panteleit B., Reich ling J. (2006) Einfluss oberflachennaher Warmegewinnung auf geochemische Prozesse im Grundwasserleiter. Grundwasser, 11(1), 27-39.
4. Attard G., Rossier Y., Winiarski T., Eisenlohr L. (2016) Deterministic modeling of the impact of undergroundstructures on urban groundwater temperature. Sci. Total Env., 572, 986-994. https://doi.org/10.1016/j.scitotenv.2016.07.229
5. Bayer P., Attard G., Blum P., Menberg K. (2019) The geothermal potential of cities Renew. Sustain. Energy Rev., 106, 17-30. https://doi.org/10.1016/j.rser.2019.02.019
6. Bayer P., Rivera J.A., Schweizer D., Schärli U., Blum P., Rybach L. (2016) Extracting past atmospheric warming and urban heating effects from borehole temperature pro files. Geothermics, 64, 289-299. http://doi.org/10.1016/j.geothermics.2016.06.011
7. Belousova A.P., Proskurina I.V. (2008) Principles of zoning a territory by the hazard risks of groundwater pollu tion. Water Res., 35(1) 108-119 (translated from Vodnye resursy, 35(1), 110-122). https://doi.org/10.1007/s11268-008-1013-y
8. Benz S.A., Bayer P., Blum P., Hamamoto H., Arimoto H., Taniguchi M. (2018) Comparing anthropogenic heat input and heat accumulation in the subsurface of Osa ka, Japan. Sci. Total Env ., 643, 1127-1136. https://doi.org/10.1016/j.scitotenv.2018.06.253
9. Benz S.A., Bayer P., Menberg K., Jung S., Blum P. (2015) Spatial resolution of anthropogenic heat fluxes into ur ban aquifers. Sci. Total Env., 524, 427-439. https://doi.org/10.1016/j.scitotenv.2015.04.003
10. Bidarmaghz A., Choudhary R., Soga K., Terrington R.L., Kessler H., Thorpe S. (2020) Large-scale urban underground hydro-thermal modelling – а case study of the Royal Borough of Kensington and Chelsea, London.Sci. Total Env., 700, 134955. https://doi.org/10.1016/j.scitotenv.2019.134955
11. Blum P., Menberg K., Koch F., Benz S.A., Tissen C., Hemmerle H., Bayer P. (2021) Is thermal use of groundwater a pollution? J. Contaminant hydrol., 239, 103791. https:// doi.org/10.1016/j.jconhyd.2021.103791
12. Brielmann H., Griebler C., Schmidt S.I., Michel R., Lueders T. (2009) Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiol. Ecol., 68(3), 273-286. https://doi.org/10.1111/j.1574-6941.2009.00674.x
13. Brons H.J., Griffioen J., Appelo C.A.J., Zehnder A.J.B. (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Res ., 25(6), 729-736.
14. Castiello G., Florio G., Grimaldi M., Fedi M. (2010) En hanced methods for interpreting microgravity anomalies in urban areas. First Break, 28(8), 93-98. http://doi.org/10.3997/1365-2397.28.8.40741
15. Chandler T.J. (1976) The Climate of the British Isles. Boston, Addison–Wesley Longman Ltd, 390 p.
16. Chu Z., Loria A.F.R. (2024) Modeling underground climate change across a city based on data about a building block. Sustain. Cities Soc., 114, 105775. https://doi.org/10.1016/j.scs.2024.105775
17. Dědeček P., Šafanda J., Rajver D. (2012) Detection and quantification of local anthropogenic and regional climatic transient signals in temperature logs from Czechia and Slovenia. Climatic change, 113, 787-801. https://doi.org/10.1007/s10584-011-0373-5
18. Demezhko D.Yu., Gornostaeva A.A., Khatskevich B.D., Vdovin A.G., Fakaeva N.R. (2024) Subsurface urban heat island in the city of Ekaterinburg. Lithosphere (Russia), 24(3), 566-581. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-3-566-581
19. Ferguson G., Woodbury A.D. (2004) Subsurface heat flow in an urban environment. J. Geophys. Res., 109, B02402. https://doi.org/10.1029/2003JB002715
20. Gornostaeva A.A., Demezhko D.Yu., Khatskevich B.D., Vdovin A.G., Fakaeva N.R. (2024) Influence of buildings on the subsurface thermal field of Ekaterinburg city. Geofizicheskie Protsessy i Biosfera, 23(2), 12-24. (In Russ.) https://doi.org/10.21455/GPB2024.2-2
21. Hähnlein S., Bayer P., Ferguson G., Blum P. (2013) Sustain ability and policy for the thermal use of shallow geo thermal energy. Energy Policy, 59, 914-925. https://doi.org/10.1016/j.enpol.2013.04.040
22. Hemmerle H., Ferguson G., Blum P., Bayer P. (2022) The evolution of the geothermal potential of a subsurface urban heat island. Env. Res. Lett., 17(8), 084018. https://doi.org/10.1088/1748-9326/ac7e60
23. Jung N., Paiho S., Shemeikka J., Lahdelma R., Airaksinen M. (2018) Energy performance analysis of an office building in three climate zones. Energy and Buildings, 158, 1023-1035. https://doi.org/10.1016/j.enbuild.2017.10.030
24. Kim S.W., Brown R.D. (2021) Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Env., 779, 146389. https://doi.org/10.1016/j.scitotenv.2021.146389
25. Koridalin V.E., Kuz’mina N.V., Osika V.I., Popov E.I., Tok makov V.A. (1985) Seismic noise of an industrial city. Dokl. AN SSSR, 280(5), 1094-1097. (In Russ.)
26. Lokoshchenko M.A. (2014) Urban ‘heat island’ in Moscow. Urban Climate, 10, 550-562. https://doi.org/10.1016/j.uclim.2014.01.008
27. Loria A.F.R., Thota A., Thomas A.M., Friedle N., Lautenberg J.M., Song E.C. (2022) Subsurface heat island across the Chicago Loop district: Analysis of localized drivers. Urban Climate, 44, 101211. https://doi.org/10.1016/j.uclim.2022.101211
28. Luo Z., Asproudi C. (2015) Subsurface urban heat island and its effects on horizontal ground-source heat pump potential under climate change. App. Thermal Eng., 90, 530-537. https://doi.org/10.1016/j.applthermaleng.2015.07.025
29. Menberg K., Bayer P., Zosseder K., Rumohr S., Blum P. (2013) Subsurface urban heat islands in German cities. Sci. Total Env., 442, 123-133. https://doi.org/10.1016/j.scitotenv.2012.10.043
30. Mohajerani A., Bakaric J., Jeffrey-Bailey T. (2017) The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manage., 197, 522-538. https://doi.org/10.1016/j.jenvman.2017.03.095
31. Oke T.R. (1973) City size and the urban heat island. At mospheric Env. (1967), 7(8), 769-779. https://doi.org/10.1016/0004-6981(73)90140-6
32. Previati A., Epting J., Crosta G.B. (2022) The subsurface urban heat island in Milan (Italy) – A modeling approach covering present and future thermal effects on ground water regimes. Sci. Total Env., 810, 152119. https://doi.org/10.1016/j.scitotenv.2021.152119
33. Schweighofer J.A., Wehrl M., Baumgärtel S., Rohn J. (2021) Detecting groundwater temperature shifts of a subsurface urban heat island in SE Germany. Water, 13(10), 1417. https://doi.org/10.3390/w13101417
34. Shuleikin V.N. (2015) Water vapor, atmospheric electricity, and radon transfer to the near-surface soil layers and the atmosphere. Izv. Atmos. Ocean. Phys. 51(7), 688-692 (translated from Geofizicheskie Protsessy i Biosfera,13(3), 31-41). https://doi.org/10.1134/S0001433815070087
35. Smith M., Hargroves K.C., Stasinopoulos P., Stephens R., Desha C., Hargroves S. (2007) Energy Transformed: Sustainable energy solutions for climate change mitigation. Brisbane, QUT ePrints, 600 p.
36. Spivak A.A., Loktev D.N., Rybnov Yu.S., Soloviev S.P., Kharlamov V.A. Geophysical fields of megapolis. Geo fizicheskie Protsessy i Biosfera, 15(2), 39-54 (In Russ.)
37. Stewart I.D., Krayenhoff E.S., Voogt J.A., Lachapelle J.A., Allen M.A., Broadbent A.M. (2021) Time evolution of the surface urban heat island. Earth’s Future, 9(10), p.e2021EF002178. https://doi.org/10.1029/2021EF002178
38. Taniguchi M. (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature–depth profiles. Water Resources Res., 29(7), 2021-2026. https://doi.org/10.1029/93WR00541
39. Tien P.W., Wei S., Liu T., Calautit J., Darkwa J., Wood C. (2021) A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand. Renewable Energy, 177, 603-625. https://doi.org/10.1016/j.renene.2021.05.155
40. Tzavali A., Paravantis J.P., Mihalakakou G., Fotiadi A., Stigka E. (2015) Urban heat island intensity: A literature review. Fresenius Envir. Bull., 24(12b), 4537-4554.
41. Vatin N.I., Nemova D.V., Rymkevich P.P., Gorshkov A.S. (2012) Influence of building envelope thermal protection on heat loss value in the building. Inzhenerno-stroitel’nyi Zhurnal, (8), 4-14. (In Russ.) https://doi.org/10.5862/MCE.34.1
42. Visser P.W., Henk K., Bense V., Emiel B. (2020) Impacts of progressive urban expansion on subsurface temperatures in the city of Amsterdam (The Netherlands). hydrogeol. J., 28(5), 1755-1772. https://doi.org/10.1007/s10040-020-02150-w
43. Westaway R., Scotney P.M., Younger P.L., Boyce A.J. (2015) Subsurface absorption of anthropogenic warming of the land surface: The case of the world’s largest brickworks (Stewartby, Bedfordshire, UK). Sci. Total Env., 508, 585-603. https://doi.org/10.1016/j.scitotenv.2014.09.109
44. Zhu K., Blum P., Ferguson G., Balke K.-D., Bayer P. (2010) The geothermal potential of urban heat islands. Environ. Res. Lett., 5, 044002. https://doi.org/10.1088/1748-9326/5/4/044002
45.
Review
For citations:
Demezhko D.Yu., Khatskevich B.D., Fakaeva N.R., Gornostaeva A.A., Antipin A.N. Heat losses from buildings and formation of underground urban heat islands. LITHOSPHERE (Russia). 2025;25(5):1201-1215. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-5-1201-1215





































