Mineralogy and genesis of apocarbonate serpentinites of the Pitkäranta mining district, Northern Ladoga region. Part 2. Serpentinites of the Klara ore occurrence.
https://doi.org/10.24930/2500-302X-2025-25-5-1176-1200
Abstract
Research subject. The aposkarn serpentinites of the Klara mine in the Pitkäranta mining district. Aim. Determination of mineral formation environments for serpentinites of the Klara mine. Materials and methods. In total, 45 rock specimens were studied using optical and scanning electron microscopy, electron probe analysis, powder X-ray diffraction, in frared spectroscopy, and differential thermal analysis. Results. Skarn diopside is replaced by antigorite, lizardite, chrysotile and talc, which intergrown in many cases. The forsterite skarn zone is transformed into chrysotile-antigorite serpentinites with humite-group minerals that are replaced by late lizardite. All serpentine is enriched with F; the concentration of this halogen ranges 0.7–1.8 wt % in lizardite from pseudomorphs after diopside and humite-group minerals, 2.1–3.0 wt % in chrysotile-antigorite and antigorite aggregates, and 2.5–4.6 wt % in serpentine filling cracks. Other minerals are represented by magnetite, fluorite, micas of the phlogopite-fluorophlogopite series, annite, chlorites, Mn- and Fe-containing dolomite, fluorapatite, sphalerite, and pyrophanite. Conclusions. Aposkarn serpentinites of the Klara mine were formed during two stages. (1) Predominantly lizardite serpentinites appeared during the late stages of the regressive skarnification process associated with the intrusion of early granites of the Salmi Batholith, as a result of hydration of forsterite and, partly, diopside. (2) The Li-F granite intrusion caused the re-development of the pneumatolyte-hydrothermal process. The influence of ≈300–480°C F-rich fluids led to the replacement of lizardite by antigorite and chrysotile with a high concentration of fluorine. With a subsequent decrease in temperature, late lizardite was formed due to the preserved skarn diopside and minerals of the humite group.
About the Authors
M. O. BulakhRussian Federation
Maria O. Bulakh, Geological faculty
I. A. Baksheev
Russian Federation
Ivan A. Baksheev, Geological faculty
V. O. Yapaskurt
Russian Federation
Vasily O. Yapaskurt, Geological faculty
References
1. Aleksandrov S.M. (1998) Geochemistry of Skarn and Ore Formation in Dolomites. VSP (Utrecht, Tokyo), 300 p.
2. Aleksandrov S.M., Troneva M.A. (2003) Geochemistry of titanium and its modes of occurrence in metasomatically altered rocks. Geochem. Int., 41(1), 21-37.
3. Andreani M., Baronnet A., Boullier A.-M., Gratier J.-P. (2004) A microstructural study of a “crack-seal” type serpentine using SEM and TEM techniques. Eur. J. Miner., 16, 585-595. https://doi.org/10.1127/0935-1221/2004/0016-0585
4. Balan E., Fritsch E., Radtke G., Paulatto L., Juillot F., Petit S. (2021) First-principles modeling of infrared spectrum of antigorite. Eur. J. Mineral., 33, 389-400. https://doi.org/10.5194/ejm-33-389-2021
5. Beus A.A. (1960) Beryllium Geochemistry and Genetic Types of Beryllium Deposits. Moscow, AN SSSR Publ., 333 p. (In Russ.)
6. Bulakh M.O., Baksheev I.A., Yapaskurt V.O. (2024) Mineralogy and genesis of apocarbonate serpentinites of the Pitkäranta mining district, Northern Ladoga region. Pt 1. Ophicalcite of the Hopunvaara ore field. Lithosphere (Russia), 24(6), 1060-1083. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-6-1060-1083
7. Chukanov N.V., Rozenberg K.A., Rastsvetaeva R.K., Mekkel S. (2008) New data on high titanium biotite. The problem of “vodanite”. Novye Dannye o Mineralakh, (43), 72-77. (In Russ.)
8. Debret B., Koga K.T., Nicollet C., Andreani M., Schwartz S. (2014) F, Cl and S via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova, 26, 96-101. https://doi.org/10.1111/ter.12074
9. Evans B.W. (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int. Geol. Rev., 46, 479-506. https://doi.org/10.2747/0020-6814.46.6.479
10. Faust G.T., Fahey J.J. (1964) The serpentine-group minerals. Washington, Geol. Survey Professional Paper, 92 p.
11. Figovy S., Dubacq B., d’Arko P. (2021) Crystal chemistry and partitioning of halogens in hydrous silicates. Contrib. Mineral. Petrol., 176(12). https://doi.org/10.1007/s00410-021-01860-y
12. Flemetakis S., Berndt J., Klemme S., Genske F., Cadoux A., Louvel M., Rohrbach A. (2020) An improved electron microprobe method for the analysis of halogens in natural silicate glasses. Microsc. Microanal., 26, 857-866. https://doi.org/10.1017/S1431927620013495
13. Flemetakis S., Tiraboschi C., Berndt A., Klemme S. (2022) The stability of antigorite in subduction zones revisited: the effect of F on antigorite stability and its breakdown reactions at high pressures and high temperatures, with implications for the geochemical cycles of halogens. Contrib. Mineral. Petrol., 177. https://doi.org/10.1007/s00410-022-01934-5
14. Franz G., Ackermand D. (1980) Phase relations and metamorphic history of a clinohumite-chlorite-serpentinemarble from the Western Tauern Area (Austria). Contrib. Mineral. Petrol., 75, 97-110.
15. Gerasimova E.I. (2011) Magnesian minerals of the humite group: Chemical and structural variations and their relation to the conditions of formation. PhD thesis, Moscow State University, 283 p. (In Russ.)
16. Gerasimova E.I. (2007) Mineral variety of metasomatic rocks and late hydrothermal formations of the ore deposits of Pitkäranta district (South Karelia, Russia). Min eral diversity: research and preservation. IV Int. Sympos., 67-74.
17. Ginzburg A.I. (1959) Pneumatolite-hydrothermal beryllium deposits. Geologiya Mestorozhdenii Redkikh Elementov,vyp. 4. Moscow, Nedra Publ., 4-13. (In Russ.)
18. Henry D.J., Guidotti C.V., Thomson J.A. (2005) The Ti-saturation surface for low-to-medium pressure metapelit ic biotites: Implications for geothermometry and Ti-sub stitution mechanisms. Amer. Miner., 90, 316-328. https:// doi.org/10.2138/am.2005.1498
19. Ivashchenko V.I. (2021) Rare-metal (In, Bi, Te, Se, Be) mineralization of skarn ores in the Pitkäranta mining district, Ladoga Karelia, Russia. Minerals, 11(2), 124. https://doi.org/10.3390/min11020124
20. Ivashchenko V.I., Golubev A.I. (2015) New aspects of mineralogy and metallogeny of the Pitkäranta mining district. Trudy KarNTs RAN, 7, 127-148. (In Russ.) https:// doi.org/10.17076/geo149
21. Jansson N.F., Allen R.L., Skogsmo G., Turner T. (2021) Origin of Paleoproterozoic, sub-seafloor Zn-Pb-Ag skarn deposits, Sala area, Bergslagen, Sweden. Miner. Dep., 57, 455-480. https://doi.org/10.1007/s00126-021-01071-2
22. Jesus A., Mateus A., Oliveira V. (2003) Geological setting and magnetite-ore genesis at the Corujeiras prospect (Beja district, Portugal). Congresso Nacional Geologia (Portugal), Ciências da Terra, F45–F48.
23. Konyshev A.A., Chevychelov V.Yu., Shapovalov Yu.B. (2020) Two types of highly differentiated topaz-bearing granites of the Salmi batholith, Southern Karelia. Geochem. Int., 58(1), 11-26. https://doi.org/10.1134/S0016702920010073
24. Korzhinskii D.S. (1969) Theory of Metasomatic Zonality. Moscow, Nauka Publ., 114 p. (In Russ.)
25. Larin A.M., Amelin Yu.V., Neymark L.A. (1991) Age and genesis of complex skarn ores from the Pitkäranta mining district. Geol. Rud. Mestorozhdenii, (6), 15-33. (In Russ.)
26. Lodochnikov V.N. (1936) Ilchir Serpentines and Serpentinites, and petrological issues related to them. Tr. TsNI-GRI, vyp. 38, 817. (In Russ.)
27. Makeev A.B., Bryanchaninova N.I. (1999) Topomineralogy of Ultrabasites of the Polar Urals. St.Petersburg, Nauka Publ., 252 p. (In Russ.)
28. Marakushev A.A., Polin Yu.K. (1960) On the conditions of formation of white phlogopites in dolomite marbles of the Aldan shield. Geol. Geoph., (8), 73-81. (In Russ.)
29. Mellini M., Fuchs Y., Lemaire C., Linares J. (2002) Insights into the antigorite structure from Mössbauer and FT-IR spectroscopies. Eur. J. Miner., 14, 97-104. https://doi.org/10.1127/0935-1221/02/0014-0097
30. Mellini M., Trommsdorff V., Compagnoni R. (1987) Antig orite polysomatism: Behaviour during progressive meta morphism. Contrib. Mineral. Petrol., 97, 147-155.
31. Middleton A.P., Whittaker E.J.W. (1976) The structure of Povlen-type chrysotile. Canad. Miner., 14(3), 301-306.
32. Myers B.E. (1988) The formation of zoned metasomatic veins and massive skarn in dolomite, Southern Sierra Nevada, California: Master’s thesis. The University of Arizona, 125 p.
33. Nikol’skaya Z.D., Larin A.M. (1972) Greisens of the Pitkäranta Ore Field. Zap. VMO, 101 (5), 291-297. (In Russ.)
34. O’Hanley D.S. (1996) Serpentinites: Records of Tectonic and Petrologic History. Oxford, UK, Oxford Univ. Press, 277 p.
35. Peretti A., Dubessy J., Mullis J., Frost B., Tromsdorff V. (1992) Highly reducing conditions during Alpine meta morphism of the Malenco peridotite (Sondrio, Northern Italy) indicated by mineral paragenesis and H 2 in fluid inclusions. Contrib. Mineral. Petrol., 112, 329-340.
36. Post J.L., Borer L. (2000) High-resolution Infrared spectra, physical properties, and micromorphology of serpentines. Appl. Clay Sci., 16, 73-85. https://doi.org/10.1016/S0169-1317(99)00047-2
37. Proterozoic Ladoga Structure (Geology, Deep Structure and Mineral Genesis). (2020) (Ed. N.V. Sharov). Petrozavodsk, KarNTs RAN Publ., 435 p. (In Russ.)
38. Pu W., Shou-Tsuen J. (1965) Fluorantigorite – a new variety of serpentine minerals. Scientia Sinica, 14(2), 327-328.
39. Ristić M., Czakó-Nagy I., Musić S., Vértes A. (2011) Spectroscopic characterization of chrysotile asbestos from different regions. J. Molec. Struct., 993(1), 120-126. https://doi.org/10.1016/j.molstruc.2010.10.005
40. Shabynin L.I. (1973) Formation of Magnesian Skarns. Moscow, Nauka Publ., 214 p. (In Russ.)
41. Shabynin L.I. (1974) Ore Deposits in the Magnesian Skarn Formation. Moscow, Nedra Publ., 288 p. (In Russ.)
42. Shannon R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, 751-767.
43. Shteinberg D.S., Chashchukhin I.S. (1977) Serpentinization of Ultrabasites. Moscow, Nauka Publ., 312 p. (in Russ.)
44. Sinyakov V.I. (1967) Features of the Formation of Magnesia-Skarn Magnetite Deposits of the Mountain Shoria. Novosibirsk, Nauka Publ., 112 p. (In Russ.)
45. Spiridonov E.M., Zhernakov V.I., Baksheev I.A., Savina D.N. (2000) Typomorphism of talc from apoultramaphic metasomatites of the Urals. Dokl. Earth Sci., 372, 737-739.
46. Varlakov A.S. (1999) Serpentines of ultrabasic rocks of the Urals. Uralskii Mineralogicheskii Sbornik, 9, 78-101. (In Russ.)
47. Vasil’eva A.I. (1970) Morphogenetic Features of Rhythmic Textures and Their Role in Clarifying the Conditions of Ore Formation. Moscow, Nauka Publ., 126 p. (In Russ.)
48. Vlasov K.A., Kutukova E.I. (1960) Emerald Mines. Moscow, Nedra Publ., 251 p. (In Russ.)
49. Yao Y., Chen J., Lu J., Wang R., Zhang R. (2014) Geology and genesis of the Hehuaping magnesian skarn-type cassiterite-sulfide deposit, Hunan Province, Southern China. Ore Geol. Rev., 58, 163-184. https://doi.org/10.1016/j.oregeorev.2013.10.012
50. Yariv S., Heller-Kallai L. (1973) The relationship between the IR spectra of serpentines and their structures. Clays Clay Miner., 23, 145-152.
51. Yurkova R.M. (1991) Mineral Transformations of the Ophiolite and Associated Volcanic-Sedimentary Complexes in the Northwestern Pacific Fringing. Moscow, Nauka Publ., 166 p. (In Russ.)
52. Zhernakov V.I. (2009) Ural Emerald Mines. Mineral. Al’manakh, 14 (2), 128. (In Russ.)
53. Zhu C., Sverjensky D.A. (1992) F-Cl-OH partitioning between biotite and apatite. Geochim. Cosmochim. Acta, 55, 1837-1858.
54. Zhukhlistov A.P., Zvyagin P.P. (1998) Crystal structure of lizardite according to electronic diffractometry data. Crystallografiya, 43(6), 1009-1014 (In Russ.)
55. Zubkov A.A., Knyazev G.B., Bannikov O.L. (1988) On the mineralogy of hydrosilicates of iron ore deposits of the magnesia-skar formation. The interrelation of magmatism, metamorphism and ore formation processes in the folded regions of southern Siberia. Novosibirsk, AN SSSR Publ., 114-135. (In Russ.)
56. Zussman J. (1954) Investigation of the crystal structure of antigorite. Miner. Mag., 30, 498-512.
57.
Review
For citations:
Bulakh M.O., Baksheev I.A., Yapaskurt V.O. Mineralogy and genesis of apocarbonate serpentinites of the Pitkäranta mining district, Northern Ladoga region. Part 2. Serpentinites of the Klara ore occurrence. LITHOSPHERE (Russia). 2025;25(5):1176-1200. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-5-1176-1200





































