Preview

LITHOSPHERE (Russia)

Advanced search

Primary platinum-group minerals in the placer of the Bol’shoy Sap River (Middle Urals) and the problem of the indicator value of the osmium-ruthenium trend for the compositions of natural hexagonal Os-Ir-Ru alloys.

https://doi.org/10.24930/2500-302X-2025-25-5-1142-1160

Abstract

Research subject. Primary platinum-group minerals from the gold placer of the Bolshoy Sap River (Middle Urals) in the southern frame of the Pervomaisk ophiolite-type massif. Methods. The chemical composition of minerals was studied by scanning electron microscopy (JEOL-JSM6390LV) and electron microprobe analysis (Cameca SX 100). The sulfur isotopic composition of laurite and erlichmanite grains was determined using a laser femtosecond ablation system (NWR Femtosecond UC with laser Pharos 2mJ-200-PPam and harmonics module HE-4Hi-A) attached to a MAT-253 mass spectrometer (Thermo Fisher Scientific). Results. A wide species composition of primary platinum-group minerals was revealed, represented by native minerals of the Os-Ir-Ru (osmium, iridium, ruthenium, rutheniridosmine) and Pt-Fe (by stoichiometry close to the composition of isoferroplatinum) systems, as well as Ru-Os sulfides (laurite, erlichmanite). Iridium grains contain isoferroplatinum lamellae, which are a product of solid solution decomposition, as well as the inclusions of cuproiridsite, Ru-bearing pentlandite, kashinite, and tolovkite. Inclusions in isoferroplatinum are represented by braggite, rhodium and palladium sulfides (Pd-Rh-S), and Pd-bearing (5.78 wt % Pd) native gold. Variations in the composition of natural hexagonal Os-Ir-Ru alloys reflect the presence of three trends (i.e., ruthenium, osmium-iridium, and osmium-ruthenium). The sulfur isotopic values of laurite and erlichmanite grains ((1.0–2.5) ±0.2‰) are consistent with derivation of sulfur from a sub-chondritic source, reflecting a minor contribution of crustal sulfur during mantle-crustal interaction processes. The prevalence of primary platinum-group minerals in placers from various platinum-bearing zones of the Middle Urals was analyzed. In the western Serov-Nevyansk zone, Os-Ir-Ru alloys of osmium-iridium and ruthenium trends are common, as well as Pt-Fe minerals of the tetraferroplatinum series PtFe – tulameenite PtFe0.5 Cu 0.5 – ferronickelplatinum PtFe 0.5 Ni0.5. Os-Ir-Ru alloys of the osmium-ruthenium trend were established only in the eastern Salda-Sysert and Alapaevsk zones. Os-Ir-Ru alloys of ruthenium and osmium-iridium trends, native iridium and isoferroplatinum are widespread. Conclusions. The wide species composition of primary PGMs in the placer is due to the polygenic nature of chromitites, which is typical of ophiolite massifs in the Middle Urals. The high-temperature Os-Ir-Ru alloys of the ruthenium trend, as well as Os-Ru sulfides, are associated with laterally secreted chromites in the dunite-harzburgite complex. Metasomatic and reactive metasomatic chromitites in the dunite-verlite-clinopyroxenite complex serve as sources of natural Os-Ir alloys of the osmium-iridium trend and Pt-Fe alloys. The highest temperature Os-Ir-Ru alloys of the ruthenium trend, as well as Os-Ru sulfides, are associated with lateral secretion chromitites in the dunite-harzburgite complex. Metasomatic and reaction-metasomatic chromitites in the dunite-wehrlite-clinopyroxenite complex serve as bedrock sources of natural Os-Ir alloys of the osmium-iridium trend, and Pt-Fe alloys. The most likely reason for the appearance of the osmium-ruthenium   trend in the chemical composition of natural hexagonal Os-Ir-Ru alloys is the recrystallization of primary high-temperature solid solutions during metamorphic transformations at lower temperature conditions and the change of the oxidative regime to a reducing regime.

About the Authors

V. V. Murzin
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Valery V. Murzin



K. N. Malitch
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Kreshimir N. Malitch



A. Yu. Kissin
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Alexander Yu. Kissin



References

1. Badanina I.Yu., Malitch K.N., Lord R.A., Belousova E.A., Meisel T.C. (2016) Closed-system behaviour of the Re-Os isotope system recorded in primary and secondary PGM assemblages: Evidence from a mantle chromitite at Harold’s Grave (Shetland ophiolite Complex, Scotland). Ore Geol. Rev., 75, 174-185.

2. Badanina I.Y., Malitch K.N., Lord R.A., Meisel T.C. (2013) Origin of primary PGM assemblage in сhromitite from a mantle tectonite at Harold’s Grave (Shetland ophiolitecomplex, Scotland). Mineral. Petrol., 107, 963-970.

3. Badanina I.Y., Malitch K.N., Murzin V.V., Zharkova E.V., Kadik A.A. (2015) Results of experimental determination of the intrinsic oxygen fugacity of Ru-Os-Ir alloys from the Verkh-Neivinsky dunite-harzburgite massif, Middle Urals, Russia. Geochem. Int., 53(7), 658-663 (translated from Geokhimiya, 53(7), 661-667). https:// doi.org/10.7868/S001675251507002X

4. Bai W., Robinson P.T., Fang Q., Yang J., Yan B., Zhang Z., Xu-Feeng Hu, Zhou M.-F., Malpas J. (2000) The PGE and base metal alloys in the podiform chromitites of the Luobusa ophiolite, Southern Tibet. Canad. Miner., 38, 585-598. https://doi.org/10.2113/gscanmin.38.3.585

5. Barkov A.Y., Shvedov G.I., Silyanov S.A., Martin R.F. (2018) Mineralogy of platinum-group elements and gold in the ophiolite-related placer of the River Bolshoy Khailyk, Western Sayans, Russia. Minerals, 8, 247. https://doi.org/10.3390/min8060247

6. Beaudoin G., Taylor B.E., Rumble III D., Thiemens M. (1994) Variations in the sulfur isotope composition of troilite from the Cañon Diablo iron meteorite. Geochim. Cosmochim. Acta, 58(19), 4253-4255. doi:10.1016/0016-7037(94)90277-1

7. Cabri L.J., Harris D.C., Weiser T.V. (1996) The mineralogy and distribution of Platinum Group Mineral (PGM) placer deposits of the world. Explor. Miner. Geol., 5(2), 73-167.

8. Cabri L.J., Oberthür T., Keays R.R. (2022) Origin and depositional history of platinum-group minerals in placers – A critical review of facts and fiction. Ore Geol. Rev., 144, 104733. https://doi.org/10.1016/j.oregeorev.2022.104733

9. Cartigny P., Farquhar J., Thomassot E., Harris J.W., Wing B., Masterson A., McKeegan K., Stachel T. (2009) A man tle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: evidence from 13 C-, 15 N and 33, 34 S-stable isotope systematics. Lithos, 112, 852-864.

10. Chashchukhin I.S. (2019) About the genetic types of dunites in folded ultramafites areas (using the Urals as an example). Izvestiya Ural’skogo Gosudarstvennogo Gor nogo Universiteta, 54(2), 42-48. (In Russ.) https://doi.org/10.21440/2307-2091-2019-2-42-48

11. Chashchukhin I.S. (1999) Chromites. Mineral deposits of the Urals. Ekaterininburg, UrO RAN Publ., 51-63. (In Russ.)

12. Chashchukhin I.S., Bulykin L.D., Chashchukhina V.A. (2005) On the nature of chromite mineralization in rocks of the dunite-clinopyroxenite complex of ophiolites of the Middle Urals. Trudy IGG UrO RAN, 152, 353-358. (In Russ.)

13. Chashchukhin I.S., Mamina V.M., Surganov A.V., Chash chukhina V.A., Bulykin L.D., Gmyra V.G. (2004) Regularities of the composition of accessory and ore-forming spinel in ultramafites of the Pervomaisky massif. Trudy IGG UrO RAN, 151, 206-217. (In Russ.)

14. Distler V.V., Kryachko V.V., Yudovskaya M.A. (2008) Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex. Mineral. Petrol., 92, 31-58 https://doi.org/10.1007/s00710-007-0207-3

15. Garuti G., Zaccarini F. (1997) In situ alteration of platinum-group minerals at low temperature: evidence from serpentinised and weathered chromitite of the Vourinos complex, Greece. Canad. Miner., 35, 611-626.

16. González-Jiménez J.M., Reich M., Camprubí A., Gervilla F., Griffin W.L., Colás V., O’Reilly S.Y., Proenza J.A., Pear son N.J., Centeno-García E.C. (2015) Thermal meta morphism of mantle chromites and the stability of noble metal nanoparticles. Contrib. Mineral. Petrol., 170, 15. https://doi.org/10.1007/s00410-015-1169-9

17. Hagen D., Weiser Th., Htay Than. (1990) Platinum-group minerals in quaternary gold placers in the upper Chindwin area of northern Burm. Mineral. Petrol., 42, 265-286.

18. Harris D.C., Cabri L.J. (1991) Nomenclature of platinum-group-element alloys: review and revision. Canad. Miner., 29(2), 231-237.

19. Hattori K.H., Cabri L.J., Johanson B., Zientek M.L. (2004) Origin of placer laurite from Borneo: Se and As contents, and S isotopic compositions. Mineral. Magaz., 68(2), 353-368.

20. Ignatiev A.V., Velivetskaya T.A., Budnitskiy S.Y., Yakovenko V.V., Vysotskiy S.V., Levitskii V.I. (2018) Precision analysis of multisulfur isotopes in sulfides by femto second laser ablation GC-IRMS at high spatial resolution. Chem. Geol., 493, 316-326. https://doi.org/10.1016/j.chemgeo.2018.06.006

21. Kadik A.A., Zharkova E.V., Rudashevskii N.S. Oxidation reduction conditions for the formation of minerals (Os, Ir, Ru, Pt) and (Pt, Fe) of ultramafic complexes. Dokl. Akad. Nauk, 331(3), 349-352. (In Russ.)

22. Kiseleva O.N., Airiyants E.V., Belyanin D.K., Zhmodik S.M. (2020) Podiform chromitites and PGE mineralization in the Ulan-Sar’dag Ophiolite (East Sayan, Rus sia). Minerals, 10, 141. doi:10.3390/min10020141

23. Kiseleva O.N., Airiyants E.V., Belyanin D.K., Zhmo dik S.M. (2022) Chemical and microstructural features of the platinum-group minerals formed at different stages of the ophiolite Ospa-Kitoi massif development (South-Eastern part of Eastern Sayan). Ultramafic-mafic complexes: geology, structure, ore potential. Apatity, FITs KNTs RAN Publ., 46-49. (In Russ.)

24. Kiseleva O., Zhmodik S. (2017) PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia. Geosci. Front., 8, 721-731. http://dx.doi.org/10.1016/j.gsf.2016.04.003

25. Malitch K.N., Anikina E.V., Badanina I.Y., Pushkarev E.V., Khiller V.V., Belousova E.A. (2016) Chemical composition and osmium-isotope systematics of primary and secondary PGM assemblages from high-Mg chromitite of the Nurali lherzolite, the South Urals, Russia. Geology of Ore Deposits, 58 (1), 1-19 (translated from Geol. Rud. Mestorozhd., 58(1), 3-22). https://doi.org/10.1134/S1075701515050037

26. Malitch K.N., Badanina I.Y., Belousova E.A., Murzin V.V., Velivetskaya T.A. (2021) Origin of Ru-Os sulfides from the Verkh-Neivinsk ophiolite massif (Middle Urals, Russia): compositional and S-Os isotope evidence. Minerals, 11, 329. https://doi.org/10.3390/min11030329

27. Malitch K.N., Melcher F., Mühlhans H. (2001) Palladium and gold mineralization in podiform chromitite at Kraubath, Austria. Mineral. Petrol., 73, 247-277.

28. Melcher F., Grum W., Thalhammer T.V., Thalhammer O.A.R. (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid Inclusions in Chromite. J. Petrol., 38(10), 1419-1458.

29. Murzin V.V., Badanina I.Yu., Malitch K.N., Ignatiev A.V., Velivetskaya T.A. (2019a) Sulfur Isotope Composition of Ru–Os Sulfides from the Verkh-Neivinsky Dunite-Harzburgite Massif (Middle Urals, Russia): New Data. Doklady Earth Sciences, 488(1), 1097-1099. (translated from Dokl. Akad. Nauk, 448(2), 185-188). https://doi.org/10.1134/S1028334X19090186

30. Murzin V., Chudnenko K., Palyanova G., Kissin A., Varlamov D. (2018) Physicochemical model of formation of gold-bearing magnetite-chlorite-carbonate rocks at the Karabash massif of ultramafic rocks (Southern Urals, Russia). Minerals, 8(7), 306. https://doi.org/10.3390/min8070306

31. Murzin V.V., Kisin A.Yu., Badanina I.Yu., Malitch K.N. (2019b) Platinum group minerals in placers of the Murzinsky granite-gneiss massif in the Middle Urals and the problem of the indicator role of the composition of Os-Ir-Ru minerals. Metallogeny of ancient and modern oceans – 2019. Miass-Ekaterinburg, Fort-Dialog-Iset’ Publ., 212-216. (In Russ.)

32. Murzin V.V., Kisin A.Yu., Varlamov D.A. (2015) PGM minerals from placer of the Murzinka-Adui granite gneissic complex and their possible sources. Mineralogiya, 1, 34-48. (In Russ.)

33. Murzin V.V., Malitch К.N., Badanina I.Yu., Varlamov D.A., Chashchukhin I.S. (2023) Mineral assemblages from chromitites of the Alapaevsk dunite-harzburgite massif (Middle Urals). Litosphere (Russia), 23(5), 740-765. (In Russ.) https://doi.org/10.24930/1681-9004-2023-23-5-740-765

34. Murzin V.V., Malitch K.N., Kisin A.Yu. (2025) Secondary platinum-group minerals from placer of the Bolshoy Sap River (Middle Urals). Mineralogiya, 11(1), 6-16. (In Russ.) DOI: 10.35597/2313545X-2025-11-1-1. EDN: FPDVZT

35. Murzin V.V., Sustavov S.G., Mamin N.A. (1999) Gold and platinum-group element mineralization of placer deposits of the Verkh-Neivinsky massif of Alpine-type ultrabasites (the Middle Urals), Ekaterinburg, UGGA Publ., 93 p. (In Russ.)

36. Nekrasova A.A., Grishanova N.V., Azovskova O.B. (2015) Material composition of platinum group metals from loose sediments of the Aktai area (Middle Urals). Problemy Mineralogii, Petrografii i Metallogenii. Vyp. 18. Perm’, Permskii Gos. Universitet Publ., 36-43. (In Russ.)

37. Osipenko A.B., Sidorov E.G., Kostoyanov A.I., Tolstykh N.D. (2002) Chromitites of ultramafic complexes of the Valizhgen Peninsula, Koryak Highland. Geol. Ore Depos., 44(1), 69-83 (translated from Geol. Rud. Mestorozhd., 44(1), 77-92).

38. Prichard H.M., Tarkian M. (1988) Platinum and palladium minerals from two PGE localities in the Shetland ophiolite complex. Canad. Miner., 26, 979-990.

39. Rudashevskii N.S., Kostoyanov A.I., Rudashevskii V.N. (1999) Mineralogical and isotopic evidence of the origin of massifs of the alpine-type formation (using the example of the Ust-Belsky massif, Koryak Highlands). Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 128(4), 11-28. (In Russ.)

40. Shteinberg D.S., Chashchukhin I.S., Uimin S.G. (1990) The position of chromite mineralization in the history of the formation of alpine-type hyperbasites. Geochemistry of ore elements in basites and hyperbasites. Prediction criteria. Irkutsk, IG SO RAN Publ., 166-170. (In Russ.).

41. Sidorov E.G. (2009) Platinum content of basite-hyperbasite complexes of the Koryak-Kamchatka region. Petropavlovsk-Kamchatsky, 36 p. (In Russ.)

42. Oberthür T., Melcher F., Goldmann S., Wotruba H., Dijks tra A., Gerdes A., Dale C. (2016) Mineralogy and miner al chemistry of detrital heavy minerals from the Rhine River in Germany as evidence of their provenance, sedimentary and depositional history: Focus on platinum-group minerals and remarks on cassiterite, columbite group minerals, and uraninite. Int. J. Earth Sci., 105, 637-657. https://doi.org/10.1007/s00531-015-1181-3

43. Thode H., Monster J., Dunford H. (1961) Sulphur isotope geochemistry. Geochim. Cosmochim. Acta, 25, 159-174.

44. Velivetskaya T.A., Ignatiev A.V., Yakovenko V.V., Vysotskiy S.V. (2019) An improved femtosecond laser-ablation fluorination method for measurements of sulfur isotopic anomalies (∆ 33 S and ∆ 36 S) in sulfides with high precision. Rapid Commun. Mass Spectrom., 33, 1722-1729. https://doi.org/10.1002/rcm.8528

45. Yang K., Seccombe P.K. (1993) Platinum-group minerals in the chromitites from the Great Serpentinite Belt, NSW, Australia. Mineral. Petrol., 47, 263-286.

46. Zaccarini F., Pushkarev E., Garuti G., Kazakov I. (2016) Platinum-group minerals and other accessory phases in chromite deposits of the Alapaevsk ophiolite, Central Urals, Russia. Minerals, 6, 108. https://doi.org/10.3390/min6040108

47. Zhernovsky I.V., Mochalov A.G. Genetic crystallography of hexagonal solid solutions of osmium, ruthenium and iridium as an indicator of conditions and formation. Geol. Rud. Mestorozhd., 41(6), 546-561. (In Russ.)

48. Zoloev K.K., Volchenko Ya.A., Koroteev V.A., Malakhov I.A., Mardirosyan A.N., Khrypov V.N. (2001) Platinum-metal mineralization in the geological complexes of the Urals. Ekaterinburg, UGSE Publ., 199 p. (In Russ.

49.


Review

For citations:


Murzin V.V., Malitch K.N., Kissin A.Yu. Primary platinum-group minerals in the placer of the Bol’shoy Sap River (Middle Urals) and the problem of the indicator value of the osmium-ruthenium trend for the compositions of natural hexagonal Os-Ir-Ru alloys. LITHOSPHERE (Russia). 2025;25(5):1142-1160. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-5-1142-1160

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)