Geochemistry of secondary quartzites and the problem of lithium enrichment of associated rocks in the Bolshoy Tyuters island (Gulf of Finland, Russia).
https://doi.org/10.24930/2500-302X-2025-25-5-1120-1141
Abstract
Research subject. We study the specific features of distribution of minor and rare-earth elements in secondary quartzites and associated rocks of the Bolshoy Tyuters island. Secondary quartzites, quartz veins therein, and various iron-alumina metasomatites – potential sources of minerals – are considered. Materials and methods. The mineral composition and structure of secondary quartzites were examined using a JSM-5610LV scanning electron microscope. The U-Pb isotope system of zircon grains from two samples of secondary quartzites was studied in the Center of Collective Use, Laboratory of Chemical and Analytical Studies, Geological Institute of RAS, using an Element-2 mass spectrometer. Rare elements were determined by inductively coupled plasma mass spectrometry (ICP–MS). Results. The formation of secondary quartzites was shown to be accompanied by removal of not only macrocomponents but also selective removal of most trace elements, some of which could be concentrated in iron-alumina metasomatites. The distribution of rare earth elements in these rocks shows a relatively uniform pattern: (La/Yb)n = 5–14, Eu/Eu* = 0.3–0.6, with the sum of REE in iron-alumina metasomatites being an order of magnitude greater than in quartzites. The behavior of lithium is of particular interest, the concentrations of which reach 420 ppm in iron-magnesian metasomatites. Conclusions. The results obtained indicate a fundamentally new type of lithium enrichment associated with the geochemically poorly studied secondary quartzite formation. Only chromium and, in particular, molybdenum and copper exhibit elevated concentrations in the studied quartzites, which may indirectly testify to the geodynamic setting of rock complex formation on the Bolshoy Tyuters island. This resembles the modern island-arc situation or post-folding orogeny, in which the main lithium reserves are concentrated solars (salt lakes) or rare-metal pegmatites and copper-molybdenum deposits.
Keywords
About the Authors
E. N. TerekhovRussian Federation
Evgenii N. Terekhov
A. B. Makeyev
Russian Federation
Aleksandr B. Makeyev
O. I. Okina
Russian Federation
Olga I. Okina
M. A. Matveev
Russian Federation
Maksim A. Matveev
A. S. Novikova
Russian Federation
Anastasiya S. Novikova
References
1. Cagnard F., Gapais D., Barbey P. (2007) Collision tectonics involving juvenile crust: The example of the southern Finnish Svecofennides. Precambr. Res., 154, 125-141.
2. Cherkasov G.N. (2016) Gold in secondary quartzite massifs of the western part of the AltaiSayan folded region and prospects of prospecting for large-volume gold deposits in it. Geology and mineral resources of Siberia, 4(28), 53-62. (In Russ.)
3. Copper porphyry deposits. (2001) (A.I. Krivtsov, V.S. Zvezdov, I.F. Migachev, O.V. Minina). Moscow’ TsNIGRI Publ., 232 p. (In Russ.)
4. Elhlou S., Belousova E.A., Griffin W.L., Pearson N.J., O’Reily S.Y. (2006) Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta, 70(18), A158.
5. Gavrilenko V.V., Sakhonenok V.V. (1986) Basics of geochemistry of rare lithophilic metals. Ltningrad, Izd-vo Leningradskogo un-ta, 172 p. (In Russ.)
6. Geochemistry, mineralogy and genetic types of rare element deposits. (1964) (Ed. K.A. Vlasov). In 3 v. V. 1. Moscow, Nauka Publ., 687 p. (In Russ.)
7. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y. (2008) GLITTER: Data reduction software for laser ablation ICP-MS. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. (Ed. P.J. Sy vester) (Mineral. Assoc. Can. Short Course, 40), 308-311.
8. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. (2004) The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon. https://doi.org/10.1016/j.chemgeo.2004.06.017
9. Koks K.G., Bell J.D., Pankkherst R.J. (1982) Interpretation of eruptive rocks. Moscow, Nedra Publ., 414 p. (In Russ.)
10. Koopmans L., Martins T., Linnen R., Gardiner N., Breas ley C., Palin R., Groat L., Silva D., Robb L. (2024) The formation of lithium-rich pegmatites through multi-stage melting. Geology, 52(1), 7-11. https://doi.org/10.1130/G51633.1
11. Krasotkina A.O., Skublov S.G., Kuznetsov A.B., Makeyev A.B., Astafiev B.Y., Voinova O.A. (2020) First data on the age (U-Pb, Shrimp-II) and composition of zircon from the unique Yaregsky petrotitanium deposit (South Timan). Dokl. Akad. Nauk. Nauki o Zemle, 495(2), 9-17. (In Russ.) DOI: 10.31857/S2686739720120063
12. Kuznetsov N.B., Baluev A.S., Terekhov E.N., Kolodyazhny S.Y., Przhiyalgovsky E.S., Romaniuk T.V., Duben sky A.S., Sheshukov V.S., Lyapunov S.M., Bayanova T.B., Serov, P.A. (2021) On the timing of formation of the Kandalaksha and Keretsky grabens of the White Sea paleorift system in the light of new data of isotope geo chronology. Geodynam. Tectonophys, 12(3), 570-607. https:// doi.org/10.5800/GT-2021-12-3-0540
13. Lahtinen R., Nironen M. (2010) Paleoproterozoic lateritic paleosol–ultra-mature/mature quartzite–meta-arkose successions in southern Fennoscandia – intra-orogenic stage during the Svecofennian orogeny. Precambr. Res., 183, (4), 770-790.
14. Lyutoev V.P., Terekhov E.N., Makeyev A.B., Lysyuk A.Yu. (2016a) First data on the composition and spectroscopy of quartz-bearing rocks of Bolshoi Tyuters Island. Izv. Vuzov, ser. Geologia i Razvedka, (3), 19-27. (In Russ.)
15. Lyutoev V. P., Terekhov E.N., Makeyev A.B., Lysyuk A.Y., Golovataya O.S. (2016b) Quartz of Bolshoy Tyuters Island: spectroscopic studies. Mineralogia Tekhnogeneza, (18), 88-108. (In Russ.)
16. Makeyev A.B., Borisovskii S.E., Krasotkina A.O. (2020) Chemical composition and age of monazite and kularite from titanium ores of Pizhemskoye and Yaregskoye deposits (Middle and South Timan). Georesyrsy, 22(1), 22-31. (In Russ.) DOI: 10.18599/grs.2020.1.22-31
17. Mintz M.V. (2018) Geodynamic interpretation of a volumetric model of the depth structure of the Svecofenn accretionary orogen. Trudy KarNTs RAN, (2), 62-76. (In Russ.) https://doi.org/10.17076/geo698
18. Mishin L.F., Berdnikov N.V. (2010) Indicator role of high alumina secondary quartzites in the search for ore deposits. Rudy i Metally, (3), 14-24. (In Russ.)
19. Morozov Yu.A., Matveev M.A., Romaniuk T.V., Smul’s kaya A.I., Terekhov E.N., Bayanova T.B. (2022a) U-Pbdating of sill-like (lamellar) bodies of the early kinemat ic gabbrodiorite-granodiorite series in the cover-folding ensemble of the Secaucofennides of the Ladoga region. Dokl. AN. Nayki o Zemle, 507(1), 13-22. (In Russ.) DOI: 10.31857/S2686739722601260
20. Morozov Yu.A., Terekhov E.N., Matveev M.A., Okina O.I. (2022b) Geochemical markers of joint structural and material evolution of the cover and basement (Svecofen nides of the Northern Ladoga region, Russia). Geodynam. Tectonophys, 13(3). (In Russ.)
21. Morozova L.N. (2018) Kolmozerskoye lithium deposit of ra re-metal pegmatites: new data on rare-element composition (Kola Peninsula). Lithosphere (Russia), 18(1), 82-98. (In Russ.)
22. Myskova T.A., Mil’kevich R.I., L’vov P.A. (2012) U-Pb geochronology (SHRIMP-II) of zircons from meta-sedi ments of the Ladoga series (Northern Ladoga, Baltic Shield). Stratigrafiya. Geol. Korrelyatsiya, 20(2), 55-67. (In Russ.)
23. Nakovnik N.I. (1968) Secondary quartzites of the USSR and related mineral deposits. Мoscow, Nedra Publ., 335 p. (In Russ.)
24. Nironen M., Korja A., Heikkinen P. (2006) A geological interpretation of the upper crust along FIRE 2 and FIRE 2A. Geol. Surv. Finland, Spec. Paper, 43, 77-103.
25. Okina O., Lyapunov S., Avdosyeva M., Ermolaev B., Gol ubchikov V., Gorbunov A., Sheshukov V. (2016). An investigation of the reliability of HF acid mixtures in the bomb digestion of silicate rocks for the determination of trace elements by ICP-MS. Geostand. Geoanal. Res., 40, 583-597. https://doi.org/10.1111/ggr.12124
26. OST 41-08-212-04 “Standards of error in determining the chemical composition of mineral raw materials and classification of methods of laboratory analysis by accuracy of results”. 2006. Moscow, RIS. VIMS Publ., 24 p. (In Russ.)
27. Polenov Yu.A., Ogorodnikov V.I., Savichev A.N. (2013) Rare earth elements in quartz vein formations of the Urals and their indicative role. Lithosphere (Russia), (2), 105-119. (In Russ.)
28. Romanyuk T.V., Tkachev A.V. (2010) Geodynamic scenario of the formation of the world’s largest Miocene-Quaternary boron-lithiene provinces. Мoscow, Svetoch Plus Publ., 304 p. (In Russ.)
29. Ryabova E.A., Ryabova A.A., Malee D.Yu., Mishin L.F. (2012) Indicator role of secondary quartzites in the search for ore deposits. Scientific, Technical, and Economic Cooperation between the APR Countries in the 21st Century. V. 1, 166-171. (In Russ.)
30. Shcherbakova T.F., Terekhov E.N. (2019) Geochemistry of sillimanite-magnetite-kaolinite metasomatites from Bolshoy Tyuters Island (Gulf of Finland, Russia). Geokhimiya, (6), 605-617. (In Russ.)
31. Skublov S.G., Terekhov E.N., Kuznetsov N.B., Makeyev A.B., Salimgaraeva L.I. (2024) U-Pb (SHRIMP-II) age of zircon from granites of Bolshoy Tyuters Island (Gulf of Finland, Russia) and the problem of interpretation of the lower discordia intersection. Dokl. Akad. Nauk. Nauki o Zemle, 517(1), 1165-1176. (In Russ.) DOI: 10.1134/S1028334X24601573
32. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al. (2008) Plešovice Zircon – A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chem. Geol., 249, (1-2), 1-35. https://doi.org/10.1016/j.chem-geo.2007.11.005
33. Taylor S.R., McLennan S.M. (1985) The Continental Crust: Its Composition and Evolution. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne. 312 p.
34. Terekhov E.N., Kuznetsov N.B., Romanyuk T.V., Mat veev M.A., Makeyev A.B., Novikova A.S., Gushchi na M.Y., Dubenskii A.S., Sheshukov V.S., YurmanovA.A. (2024) U-PB age of zircon from Paleoproterozoic secondary quartzites of Bolshoi Tyuters Island and sandy matrix of conglomerates of the Early Rheanian Khogland series of Khogland Island. Bolshoi Tyuters Island and sandy matrix of conglomerates of the Early Rhean Khogland series of Gogland Island (Gulf of Finland): peculiarities of the PreRiphean hiatus in sedimentation in the northeast of the East European Platform. Geodynam. Tectonophys., 15(4), Article 0766. (In Russ.) doi:10.5800/GT-2024-15-4-0766
35. Terekhov E.N., Makeyev A.B., Prokof’ev V.Y., Shcherbakova T.F., Baluev A.S., Ermolaev B.V. (2017) On the nature of secondary quartzites of Bolshoy Tyuters Island (Gulf of Finland, Russia). Lithosphere (Russia), 17(6), 97-115. (In Russ.)
36. Terekhov E.N., Makeyev A.B., Skublov S.G., Okina O.I., Maksimova Y.A. (2023) Quartz porphyries of the outer islands of the Gulf of Finland – volcanic komagmata of Rapakivi granites. Vulkanologiya i Seismologiya, (6), 101-121. (In Russ.) DOI: 10.31857/S020303062370030X
37. Terekhov E.N., Shcherbakova T.F. (2006) On the origin of the positive Eu anomaly in acidic rocks of the eastern part of the Baltic Shield. Geokhimiya, (5), 483-500. (In Russ.)
38. Vinogradov A.P. (1962) Average contents of chemical elements in the main types of eruptive rocks of the Earth’s crust. Geokhimiya, (7), 555-565. (In Russ.)
39. Wiedenbeck M., Hanchar J.M., Peck W.H., Sylvester P., Valley J., Whitehouse M., Kronz A., Morishita Y. et al. (2004) Further Characterisation of the 91500 Zircon Crystal. Geostand. Geoanal. Res., 28(1), 9-39. https:// doi.org/10.1111/j.1751-908X.2004.tb01041.x
40. Zagorskii V.E., Vladimirov A.G., Makagon V.M. et al. (2014) Large fields of spodumene pegmatites in settings of riftogenesis and post-collisional strike-slip deformation of continental lithosphere. Geologiya i Geofizika, (2), 237-251. (In Russ.)
41.
Review
For citations:
Terekhov E.N., Makeyev A.B., Okina O.I., Matveev M.A., Novikova A.S. Geochemistry of secondary quartzites and the problem of lithium enrichment of associated rocks in the Bolshoy Tyuters island (Gulf of Finland, Russia). LITHOSPHERE (Russia). 2025;25(5):1120-1141. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-5-1120-1141





































