Physicochemical models of low-temperature seawater–basaltic glass interaction in the presence of CO 2 and CH 4
https://doi.org/10.24930/2500-302X-2025-25-5-1104-1119
Abstract
Research subject. Seawater, basalts, and products of their transformation. Aim. To assess the behavior of chemical elements, mineral assemblages, and mineral formation conditions during low-temperature seawater–basalt interaction, including the additional input of dissolved CH4 and CO2 to the system. Method. Physicochemical modeling of seawater–basalt interaction was conducted using the Selektor software in closed systems based on changes in the ξ = –lg(seawater–basalt – Sw/Bs) parameter. Results. According to the conducted physicochemical modeling of seawater–basaltic glass inter action (closed system), quartz, goethite, celadonite, chabazite, manganite, and gibbsite are precipitated at the fluid-dominated part of the model (ξ> 3) under oxidizing conditions. An increase in the relative amount of reacted basalt (ξ < 3) leads to a decrease in the Eh value and the replacement of goethite by hematite and magnetite in assemblage with pyrite, saponite, chlorite, and zeolites. The addition of CH4 to the system during early diagenesis under slightly alkaline (pH≈ 10) and reducing conditions (Eh < 0) results in the formation of brucite, chlorite, chrysotile, and pyrite at low Fe concentrations in solution and the absence of quartz, goethite, and manganite. During late diagenesis under alkaline conditions (pH > 10), a significant Si and low Fe amount passes to the solution, while pyrite and magnetite dominate in the system in addition to saponite, chlorite, celadonite, chrysotile, and zeolites. The contribution of CO 2 (1 mole/L) to the system significantly changes the model; thus, only chalcedony is precipitated at the early stages (ξ > 5) under acidic (pH < 3) oxidizing (Eh = 1) conditions. At reduced Eh values under acidic conditions (ξ = 2–3), the high Fe and Al content passes to the solution and strongly decreases under neutral and slightly alkaline (pH > 8) reducing conditions of late diagenesis. At the same stage, Mg silicates, magnetite, pyrite, and hematite are dominant; however, the Fe oxides do not form economic concentrations in solid reaction products. Conclusions. In general, our results correspond to natural diagenetic products of basaltic glass.
Keywords
About the Authors
V. V. MaslennikovRussian Federation
Valery V. Maslennikov
G. A. Tret’yakov
Russian Federation
Gennady A. Tret’yakov
References
1. Aiuppa A., Hall-Spencer J.M., Milazzo M., Turco G., CaliroS., Di Napoli R. (2021) Volcanic CO2 seep geochemistry and use in understanding ocean acidification. Biogeo chemistry, 152, 93-115. https://doi.org/10.1007/s10533-020-00737-9(0123456789
2. Atapour H., Aftabi A. (2017) The possible synglaciogenic Ediacaran hematitic banded iron salt formation (BISF) at Hormuz Island, southern Iran: Implications for a new style of exhalative hydrothermal iron-salt system. Ore Geol. Rev., 89, 70-95.
3. Avdonin V.V., Sergeeva N.E. (2006) Features of forma-tion and distribution patterns of oxide ores of the world ocean. Rudy i Metally, 56-62. (In Russ.)
4. Avdonin V.V., Sergeeva N.E., Van K.V. (2007) Genetic fea tures of the composition and structure of ferromanga nese concretions. Izv. Vuzov. Geologiya i Razvedka, 6, 49-55. (In Russ.)
5. Avdonin V.V., Zhegallo E.A., Sergeeva N.E. (2019) Bacte rial nature of oxide iron-manganese ores of the World Ocean. Moscow, GEOS Publ., 284 p. (In Russ.)
6. Ayupova N.R., Novoselov K.A., Maslennikov V.V., Melekestseva I.Yu., Hollis S.P., Artemyev D.A., Tessali na S.G. (2020) The formation of magnetite ores of the Glubochenskoe deposit, Turgai iron belt, Russia: new structural, mineralogical, geochemical, and isotopic constraints. Mineral. Depos., 56, 103-123. https://doi.org/10.1007/s00126-020-00994-6
7. Bach W., Klein F. (2009) The petrology of seafloor rodingites: Insights from geochemical reaction path modeling. Lithos, 112, 103-117.
8. Benzerara K., Menguy N., Banerjee N.R., Tyliszczak T., Brown Jr. G.E., Guyot F. (2007) Alteration of submarine basaltic glass from the Ontong Java Plateau: A STXM and TEM study. Earth Planet. Sci. Lett., 260, 187-200.
9. Bethke C.M. (2008) Geochemical and Biogeochenical reaction modeling. Cambridge University Press, N. Y. 2nd ed. 543 p.
10. Bonatti E. (1967) Mechanisms of deep-sea volcanism in the South Pacific. Res. Geochem., 2, 453-491.
11. Bonatti E. (1965) Palagonite, Hyaloclastites and Alteration of Volcanic Glass in the Ocean. Bull. Volcanol., 28, 257-269.
12. Brusnitsyn A.I., Zhukov I.G. (2010) Manganiferous deposits of the Magnitogorsk paleovolcanic belt (Southern Urals): structure of deposits, composition, genesis. Lithosphere, (2), 77-99. (In Russ.)
13. Di Bella M., Pirajno F., Sabatino G., Quartieri S., Barb ieri R., Cavalazzi B., Ferretti A., Danovaro R., Romeo T., Andaloro F. et al. (2021) Rolling Ironstones from Earth and Mars: Terrestrial Hydrothermal Ooidsas a Potential Analogue of Martian Spherules. Minerals, 11, 460. https://doi.org/10.3390/min11050460
14. Di Bella M., Sabatino G., Quartieri S., Ferretti A., Cava lazzi B., Barbieri R., Foucher F., Messori F., Italiano F. (2019) Modern iron ooids of hydrothermal origin as a proxy for ancient deposits. Sci. Rep., 9, 7107. https://doi.org/10.1038/s41598-019-43181-y
15. Dmitriev L.V., Bazylev B.A., Borisov M.V. et al. (2000) Formation of Hydrogen and Methane during Serpentinization of Mantle Oceanic Ultrabasites and the Origin of Oil. Ross. Zhurn. Nauk o Zemle, 1(1), 1-13. (In Russ.)
16. Drits V.A., Kossovskaya A.G. (1989) Smectites as Indicators of Geological Settings on Continents and Oceans. Gene sis of Sediments and Fundamental Problems of Litholo gy. Moscow, Nauka Publ., 7-37. (In Russ.)
17. Dubinin A.V. (2006) Geochemistry of rare earth elements in the ocean. Moscow, Nauka Publ., 360 p. (In Russ.)
18. Fairbridge R.W. (1983) Syndiagenesis–anadiagenesis– epidiagenesis: phases of lithogenesis. Diagenesis in Sediments and Sedimentary Rocks. (Eds G. Larsen, G.V. Chilingar). Elsevier Amsterdam, Netherlands, V. 2, 17-113. DOI: 10.1016/S0070-4571(08)71044-6
19. Flick H., Nesbor H.D. (1990) Iron ore of the Lahn-Dill type formed by diagenetic seeping of pyroclastic sequences – a case study on the Schalstein section at Gänsberg (Weilburg). Geologishe Rundshau, 401-415.
20. Frolov V.T. (1992) Lithology. B. 1: Tutorial. Moscow, MGU Publ., 336 p. (In Russ.)
21. Geochemistry of Diagenesis of Pacific Ocean Sediments (Transoceanic Profile). (1980) (Ed. E.A. Ostroumov). Moscow, Nauka Publ., 288 p. (In Russ.)
22. Grichuk D.V. (2012) Thermodynamic model of oreforming processes in a submarine Island-arc hydrothermal system. Geochem. Int., 50(13), 1069-1100.
23. Grichuk D.V. (2000) Thermodynamic Models of Submarine Hydrothermal Systems. Moscow, Nauchnyi Mir Publ., 303 p. (In Russ.)
24. Guo D., Li Y., Duan C., Fan C. (2022) Involvement of evaporite layers in the formation of iron oxide-apatite ore de posits: Examples from the Luohe deposit in China and the El Laco deposit in Chile. Minerals, 12, 1043.
25. Helgeson H.C. (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions–I. Thermodynamic relations. Geochim. Cos mochim. Acta, 39, 853-877.
26. Hümmel K. (1922) Die Entstehung eisenreicher Gesteine durch Halmyrolyse (=submarine Gesteinszersetzung). Geologische Rundschau, 13(2), 97-136.
27. Jercinovic M.J., Keil K., Smith M.R., Schmitt R.A. (1990) Alteration of basaltic glasses from north-central Brit ish Columbia, Canada. Geochim. Cosmochim. Acta, 54, 2679-2696.
28. Judd A.M. (2009) Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge University Press, 475 p.
29. Kalugin A.S. (1970) Atlas of textures and structures of volcanogenic-sedimentary iron ores of Altai (sources of matter, conditions and mechanisms of deposition, ph nomena of diagenesis, epigenesis and metamorphism of ores). Leningrad, Nedra Publ., 176 p. (In Russ.)
30. Kalugin A.S. (1973) Geology and genesis of the Devoni an banded iron-formation in Altai, western Siberia and eastern Kazakhstan. Genesis of Precambrian iron and manganese deposits. Proceedings of the Kiev Symposium, 20-25 August 1970, France: Unesco, 158-165.
31. Kampman N., Bickle M., Wigley M., Dubacq B. (2014) Flu id flow and CO2 -fluid-mineral interactions during CO2 storage in sedimentary basins. Chem. Geol., 369, 22-50. doi: 10.1016/j.chemgeo.2013.11.012
32. Karpov I.K., Chudnenko K.V., Bychinskii V.A., Kulik D.A., Pavlov A.L., Tret’akov G.A., Kashik S.A. (1995) Minimization of free energy in the calculation of heteroge neous equilibria. Geol. Geofiz., 36(4), 3-21. (In Russ.)
33. Karpov I.K., Chudnenko K.V., Kulik D.A. (1997) Modeling chemical mass transfer in geochemical processes: Ther modynamic relations, conditions of equilibrium, and numerical algorithms. Amer. J. Sci., 297, 767-806.
34. Kassandrov E.G. (2010) Red-banded jaspilites of Altai and their significance for deciphering the genesis of Precam brian ferruginous carcites and skarn-magnetite deposits. Novosibirsk, SNIIGGiMS Publ., 165 p. (In Russ.)
35. Kharin G.S. (1981) Secondary minerals in submarine ba salts of the North Atlantic. Mineral transformations of oceanic substrate rocks. Moscow, Nauka Publ., 22-29. (In Russ.)
36. Khvorova I.V., Vishnevskaya V.S. (1987) Siliceous rocks of the Phanerozoic folded belts. Origin and practical use of siliceous rocks. Moscow, Nauka Publ., 59-78. (In Russ.)
37. Klenova M.V. (1948) Geology of the sea. Moscow, Uchpedgiz Publ., 495 p. (In Russ.)
38. Kossovskaya A.G., Petrova V.V., Shutov V.D. (1982) Miner al associations of palagonitization of oceanic basalts and problems of extraction of ore components. Litologiya i Poleznye Iskopaemye, 4, 10-31. (In Russ.)
39. Kurnosov V.B. (1986) Hydrothermal alterations of basalts in the Pacific Ocean and metalliferous deposits (based on deep-sea drilling data). Moscow, Nauka Publ., 250 p. (In Russ.)
40. Larsen G., Chilingarian G.V. (1979) Introduction – Diagenesis of sediments and rocks Diagenesis in sediments and sedimentary rocks. (Eds G. Larsen, G.V. Chilingar). El sevier: Amsterdam–Oxford–N. Y., 1-29. https://doi.org/10.1016/S0070-4571(08)71070-7
41. Lein A.Yu., Ivanov M.V. (2009) Biogeochemical cycle of meth ane in the ocean. Moscow, Nauka Publ., 576 p. (In Russ.)
42. Librovich L.S. (1936) Geological structure of the Kizilo-Ur tazym region in the Southern Urals. Tr. TsNIGRI, Iss. 81. Moscow, ONTI NKTP SSSR Publ., 208 p. (In Russ.)
43. Marine Chemistry and Geochemistry: A Derivative of Encyclopedia of Ocean Sciences. (2010) (Eds J.H. Steele, S.A. Thorpe, K.K. Turekian). 2nd ed. L., Elsiever, 631 p.
44. Maslennikov V.V. (1991) Lithological control of copper py rite ores (on the example of the Sibay and Oktyabrskoye deposits of the Urals). Sverdlovsk, UrO RAN SSSR Publ., 139 p. (In Russ.)
45. Maslennikov V.V. (2021) On the possible role of seep biohal myrolysis in the formation of submarine deposits. Metal logeny of ancient and modern oceans – 2021. Syngen esis, epigenesis, hypergenesis. Miass, YuU FNTs MiG UrO RAN, 5-9. (In Russ.)
46. Maslennikov V.V., Ayupova N.R., Herrington R.J., Dany ushevskiy L.V., Large R.R. (2012) Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals. Ore Geol. Rev., 47, 5-41. https://doi.org/10.1016/j.oregeorev.2012.03.008
47. Maslennikov V.V., Ayupova N.R., Safina N.P., Tseluyko A.S., Melekestseva I.Yu., Large R.R., Herrington R.J., Kotlyarov V.A., Blinov I.A., Maslennikova, S.P., Tessali na S.G. (2019) Mineralogical features of ore diagenites in the Urals massive sulfide deposits, Russia. Minerals, 9, 150. doi:10.3390/min9030150
48. Maslennikov V.V., Tret’akov G.A., Melekestseva I.Yu. (2009) Physicochemical modeling of mineral forma tion during submarine hypergenesis of sulfide-serpenti nite clastic deposits. Metallogeny of ancient and modern oceans – 2009. Miass, IMin UrO RAN, 50-54. (In Russ.)
49. McCollom T.M., Shock E.L. (1998) Fluid-rock interactions in the lower oceanic crust: Thermodynamic models of hydrothermal alteration. J. Geophys. Res., 103(B1), 547-575.
50. Melekestseva I.Yu., Maslennikov V.V., Tret’yakov G.A., Nimis P., Beltenev V.E., Rozhdestvenskaya I.I., Maslennikova S.P., Belogub E.V., Danyushevsky L., Large R., Yuminov A.M., Sadykov S.A. (2017) Gold-and Silver Rich Massive Sulfides from the Semenov-2 Hydrother mal Field, 13° 31.13’N, Mid-Atlantic Ridge: a Case of Magmatic Contribution? Econ. Geol., 112, 741-773.
51. Melekestseva I.Yu., Tret’yakov G.A., Nimis P., Yuminov A.M., Maslennikov V.V., Maslennikova S.P., Kotlyarov V.A., Beltenev V.E., Danyushevsky L.V., Large R. (2014) Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87′ N): Evidence for phase separation and magmatic input. Ma rine Geol., 349, 37-54.
52. Miao X., Xiuli Feng X., Liu X., Li J., Wei J. (2021) Effects of methane seepage activity on the morpholo gy and geochemistry of authigenic pyrite. Marine Pet rol. Geol., 133, 105231. https://doi.org/10.1016/j.marpet-geo.2021.105231
53. Novoselov K., Belogub E., Shilovkich V., Artemyev D., Blinov I., Filippova K. (2023) Origin of ironstones of the Udokan Cu deposits (Siberia, Russia): A key study using SEM and LA-ICP-MS. J. Geochem. Explor., 249, 107221. https://doi.org/10.1016/j.gexplo.2023.107221
54. Ogorodnikov O.N., Gladkovskii A.K. (1975) Geosynclinal bauxite deposits in the Urals and their relationship with volcanism. Moscow, Nauka Publ., 96 p. (In Russ.)
55. Palandri J.L., Reed M.H. (2004) Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim. Cosmochim. Acta, 68(5), 1115-1133.
56. Pierre S., Gysi A.P., Monecke T. (2018) Fluid chemistry of mid-ocean ridge hydrothermal vents: A comparison between numerical modeling and vent geochemical data. Geofluids, 1389379.
57. Purkin A.V., Denisova T.A. (1987) Geological criteria for forecasting and prospecting in the Urals for hidden strat iform copper-pyrite deposits formed by the products of submarine weathering of basalts. Sverdlovsk, Uralgeologiya Publ., 190 p. (In Russ.)
58. Rudnitskii V.F., Aleshin K.B., Kuznetsov A.Zh., Ivanchenko V.S. (2013) Structure of magnetite deposits of the Yestyuninsky iron ore deposit in the Middle Urals. Geo logiya Rudnykh Mestorozhdenii, 55(6), 546-562. (In Russ.)
59. Silantyev S.A., Novoselov A.A., Mironenko M.V. (2011) Hydrothermal systems in peridotites at slow-spread ing ridges. Modeling phase transformations and material balance: role of gabbroids. Petrology, 19(3), 217-236.
60. Singer A., Müller G. (1983) Diagenesis in Argillaceous Sediments. Diagenesis in Sediments and Sedimenta ry Rocks. (Eds G. Larsen, G.V. Chilingar). Elsevier, Amsterdam, Netherlands, V. 2, 115-211. DOI: 10.1016/S0070-4571(08)71045-8
61. Starikova E.V. (2010) Thermodynamic model of hydro thermal-sedimentary manganese ore formation. Lithosphere, (3), 163-170. (In Russ.)
62. Strakhov N.M. (1960) Fundamentals of the Theory of Litho genesis. V. 1. Moscow, AN SSSR Publ., 212 p. (In Russ.)
63. Stranghoener M., Dultz S., Behrens H., Schippers A. (2020) Far from equilibrium basaltic glass alteration: The in fluence of Fe redox state and thermal history on element mobilization. Geochim. Cosmochim. Acta, 273, 85-98.
64. Tivey M.K. (1995) Modeling chimney growth and associated fluid flow at seafloor hydrothermal vent sites. Sea floor Hydrothermal Systems: Physical, Chemical, Bio logical, and Geological Interactions. Geophys. Monogr., 91, 158-177.
65. Tivey M.K., McDuff R.E. (1990) Mineral precipitation in the walls of black smoker chimneys: A quantitative model of transport and chemical reaction. J. Geophys. Res., 95(B8), 12617-12637.
66. Toffolo L., Nimis P., Tret’yakov G.A., Melekestseva I.Y., Beltenev V.E. (2020) Seafloor massive sulfides from mid ocean ridges: Exploring the causes of their geochemical variability with multivariate analysis. Earth-Sci. Rev., 201(B1), 102958, DOI: 10.1016/j.earscirev.2019.102958
67. Toxic Elements in Pyrite-Forming Systems. (2014)(V.V. Maslennikov, N.R. Ayupova, S.P. Maslenniko va, G.A. Tretyakov, I.Yu. Melekestseva, N.P. Safina, E.V. Belogub, R.R. Larzh, Danyushevsky L.V., Tseluiko A.S. Gladkov A.G., Kraynev Yu.D. Ekaterinburg, RIO UrO RAN Publ., 340 p. (In Russ.)
68. Tret’akov G.A. (2015) Mineral Associations and Behavior of Ore-Forming Elements during Rock Interaction with Seawater under Hydrothermal Conditions. Lithosphere, (6), 142-147. (In Russ.)
69. Zlotnik-Khotkevich A.G. (1989) Ferruginous and siliceous ferruginous sediments of pyrite deposits. Siliceous-ferruginous deposits of pyrite-bearing regions. Sverdlovsk, UrO AN SSSR, 45-52. (In Russ.)
70. Zlotnik-Khotkevich A.G., Petrova M.A. (1979) Processes of synvolcanic transformation of basalts in Northern Mudzhary and their relationship with pyrite mineraliza tion. Geologiya Rudnykh Mestorozhdenii, 1, 72-86. (In Russ.)
71.
Review
For citations:
Maslennikov V.V., Tret’yakov G.A. Physicochemical models of low-temperature seawater–basaltic glass interaction in the presence of CO 2 and CH 4. LITHOSPHERE (Russia). 2025;25(5):1104-1119. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-5-1104-1119





































