Preview

LITHOSPHERE (Russia)

Advanced search

Petrogenesis and geodynamic regime of monzonite and granite massifs of the Balbuk area (Southern Urals) according to whole-rock geochemistry, Sr-Nd isotopy, and Rb-Sr geochronology.

https://doi.org/10.24930/2500-302X-2025-25-5-1074-1103

Abstract

Research subject. In the area of the northern closure of the Magnitogorsk megazone and the Main Ural Fault bordering to the west, the state geological maps distinguish the Balbuk complex. This complex includes numerous monzonite-syenite-granite intrusions. Their isotope age, determined at different times and by different methods (K-Ar, Rb-Sr, Pb-Pb, U-Pb), varies from 363 ± 21 to 250 ± 5 Ma, which requires a deeper analysis. The composition of these granitoids has been poorly studied; as a result, the origin and geodynamic position of the Balbuk complex remain un clear. Methods. The chemical composition of rocks was studied by X-ray fluorescence analysis and mass spectrometry with inductively coupled plasma. The Sr-Nd isotopy of rocks was studied using thermal ionization mass spectrometry. Results and conclusions. The results of a mineralogical and geochemical study involving Sr-Nd isotopy of monzonites and granites of several medium-sized and small intrusions of the Balbuk area (Sharip group, Balbuk, Aushkul, and Kamatal) are presented. Geochemical features and Sr-Nd isotope data (ISr = 0.70355–0.70422, εNd t = +3.95) allow us to connect the source of monzonite magmas with the lithospheric mantle and crust of the Magnitogorsk island-arc terrane reworked by subduction fluids (including metabasites of ophiolite associations and continental margin). The main source of granites ((87 Sr/ 86 Sr) t = 0.70355– 0.70545, εNd t = +3.5…+4.8) is the metasedimentary rocks of the Magnitogorsk terrane. The distribution features of various elements in rocks reflect the complex fractionation of the parental melts. Two   Rb-Sr isochron dates were obtained: for monzonite porphyry from the small massif of the Sharip group (354.2 ± 1.4 Ma) and granite porphyry of the Kamatal massif (304 ± 29 Ma). The age data allows us to link them with the dating of other granitoids of the northern part of the Magnitogorsk megazone (Akhunovo-Petropavlovsk, Verkhneural’sk-Kassel areas) and to distinguish here discrete stages of monzonite-syenite (363–346 Ma) and subalkaline granite (307–294 Ma) magmatism. Monzonite-syenite magmatism is associated with the early destruction of the Late Devonian–Early Carboniferous accretion-collision orogen, and granite magmatism records the onset of the Ural collision orogeny. The data obtained showed that the combination of all types of granitoids into a single complex is incorrect and that the Balbuk area should be singled out as one of the centers of long-term mantle-crustal interaction.

About the Authors

I. R. Rakhimov
Institute of Geology, UFRC RAS; A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Ildar R. Rakhimov



A. A. Samigullin
Institute of Geology, UFRC RAS
Russian Federation

Aidar A. Samigullin



V. V. Kholodnov
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Vladimir V. Kholodnov



E. S. Shagalov
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Evgeny S. Shagalov



References

1. Anisimov I.S., Sopko L.N., Yamaev F.A., Kaltasheva I.I., Kozlov V.I., Petrov Yu.M. (1983) Report on additional geological study of the 1 : 50 000 scale of the Severo-Uchalinskaya area (tablets: N-40–48-В-б–г; N-40–59-Б-б, г; N-40–60-A; N-40–72-A) for 1978–1983, 1983. (In Russ.)

2. Aulov B.N., Vladimirtseva Yu.A., Gvozdik N.I., Korolko va Z.G., Levin F.D., Lipaeva A.V., Potashova M.N., Samozvantsev V.A. (2015) State geological map of the Russian Federation. Scale 1:200,000. Second edition. South Ural Series. Sheet N-40-XII Zlatoust. Explanatory note. Moscow, VSEGEI. (In Russ.)

3. Bacon C.R., Druitt T.H. (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol., 98, 224-256. https://doi.org/10.1007/BF00402114

4. Blanckenburg F. von, Davies J.H. (1995) Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14(1), 120-131. https://doi.org/10.1029/94TC02051

5. Carvalho B.B., Janasi V.D.A., Henrique-Рinto R. (2014) Geochemical and Sr-Nd-Pb isotope constraints on the petrogenesis of the K-rich Pedra Branca Syenite: Im plications for the Neoproterozoic post-collisional magmatism in SE Brazil. Lithos, 205, 39-59. https://doi.org/10.1016/j.lithos.2014.06.016

6. Chappell B.J., White A.J.R. (1974) Two Contrasting Granite Types. Pac. Geol., 8, 173-174.

7. Chappell B.W. (1999) Aluminum Saturation in I-and S-type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3), 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3

8. Chappell B.W., White A.J.R. (2001) Two contrasting granite types: 25 years later. Austral. J. Earth Sci., 48, 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x

9. Deer W.A., Howie R.A., Zussman J. (1992) An introduction to the rock forming minerals. Harlow, UK, Addison Wesley Longman, 696 p.

10. Defant M.J., Drummond M.S. (1990) Derivation of somemodern arc magmas by melting of young subducted lithosphere. Nature, 347, 662. https://doi.org/10.1038/347662a0

11. Drummond M.S., Defant M.J., Kepezhinskas P.K. (1996) Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Earth Environ. Sci. Trans. Royal Soc. of Edinburgh, 87(1-2), 205-215.

12. Eby G.N. (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2), 115-134.

13. Eby G.N. (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20(7), 641-644.

14. Ewart A., Griffin W.L. (1994) Application ofproton-mi croprobe data to trace-element partitioningin volca nic rocks. Chem. Geol., 117(1-4), 251-284. https://doi.org/10.1016/0009-2541(94)90131-7

15. Fershtater G.B. (2013) Paleozoic intrusive magmatism of the Middle and Southern Urals. Yekaterinburg, RIO UrO RAN, 368 p. (In Russ.)

16. Fisher C.M., Bauer A.M., Vervoort J.D. (2020) Disturbances in the Sm–Nd isotope system of the Acasta Gneiss com lex – implications for the Nd isotope record of the early Earth. Earth Planet. Sci. Lett., 530, 115900. https://doi.org/10.1016/j.epsl.2019.115900

17. Frost C.D., Frost B.R., Chamberlain K.R., Edwards B.R. (1999) Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced rapakivi-type anorogenic granite. J. Petrol., 40(12), 1771-1802. https://doi.org/10.1093/petroj/40.12.1771

18. Gahlan H., Azer M., Asimow P., Al-Kahtany K. (2016) Late Ediacaran post-collisional A-type syenites with shoshonitic affinities, northern Arabian-Nubian Shield: a pos sible mantle-derived A-type magma. Arab. J. Geosc., 9, 603. https://doi.org/10.1007/s12517-016-2629-x

19. Gorokhov I.M., Zaitseva T.S., Kuznetsov A.B., Ovchinniko va G.V., Arakelyants M.M., Kovach V.P., Konstantinova G.V., Turchenko T.L., Vasilyeva I.M. (2019) Isotopic systematics and age of authigenic minerals in mudstones of the Upper Riphean Inzerskaya suite of the Southern Urals. Stratigrafiya. Geol. korrelyatsiya, 27(2), 3-30. (InRuss.)

20. Gorozhanin V.M. (1995) Rubidium-strontium isotope method in solving problems of the geology of the Southern Urals. Abstract Cand. geol. and min. sci. diss. Ekaterinburg, IGG UrO RAN, 23 p. (In Russ.)

21. Gorozhanin V.M. (1998) Primary isotopic composition of strontium in igneous complexes of the Southern Urals. Magmatism and Geodynamics. (Ed. by V.A. Koroteev). Ekaterinburg, IGG UrO RAN, 98-108. (In Russ.)

22. Hawthorne F.C., Oberti R., Harlow G.E., Maresh W.V., Martin R.F., Schumacher J.C., Welch M.D. (2012) Nomenclature of the amphibole supergroup. Amer. Miner., 97(11-12), 2031-2048. https://doi.org/10.2138/am.2012.4276

23. Ivanov K.S., Smirnov V.N., Erokhin Yu.V. (2000) Tectonics and magmatism of the collisional stage (using the Middle Urals as an example). Yekaterinburg, UrO RAN, 131 p. (In Russ.)

24. Jiang C., Wu W., Li L., Mu Y., Bai K., Zhao X. (2001) Tec tonic Evolution of the Eastern Southern Tianshan Mountain. Beijing, Geological Publishing House.

25. Jung S., Hoernes S., Hoffer E. (2005) Petrogenesis of cogenetic nepheline and quartz syenites and granites (Northern Damara Orogen, Namibia): enriched mantle versus crustal contamination petrogenesis of cogenetic nepheline and quartz syenites and granites (Northern Damara Orogen, Namibia): enriched mantle versus crustal contamination. J. Geol., 113(6), 651-672. http://dx.doi.org/10.1086/467475

26. Kholodnov V.V., Fershtater G.B., Shagalov E.S., Shardakova G.Yu. (2017) Riphean magmatism and ore formation preceding the opening of the Ural paleoocean (western slope of the Southern Urals). Lithosphere Russia, 17(2), 5-26. (In Russ.)

27. Kholodnov V.V., Shagalov E.S., Kallistov G.A., Shardakova G.Yu., Salikhov D.N., Konovalova E.V. (2021а) Akhunovo-Petropavlovsk granitoid area as a marginal-con tinental center of long-term mantle-crust interaction: the role of subduction and rift-plume sources. Geologiya i geofizika, 62(6), 800-820. (In Russ.)

28. Kholodnov V.V., Shardakova G.Yu., Puchkov V.N., Petrov G.A., Shagalov E.S., Salikhov D.N., Korovko A.V., Rakhimov I.R., Borodina N.S. (2021б) Paleozoic granitoid magmatism of the Urals as a reflection of the stages of geodynamic and geochemical evolution of a collisional orogen. Geodinamika i tektonofizika, 12(2), 225-245. (In Russ.) https://doi.org/10.5800/GT-2021-12-2-0522

29. Kong H., Li H., Wu Q.H., Xi X.S., Dick J.M., Gabo-Ratio J.A.S. (2018) Co-development of Jurassic I-type and A-type granites in southern Hunan, South China: dual control by plate subduction and intraplate mantle upwelling. Geochemistry, 78(4), 500-520. https://doi.org/10.1016/j.chemer.2018.08.002

30. Kosarev A.M., Puchkov V.N., Seravkin I.B. (2005) Petrological and geochemical features of the Early Devonian-Eifelian island-arc volcanics of the Magnitogorsk zone in a geodynamic context. Lithosphere Russia, (4), 22-41. (In Russ.)

31. Kosarev A.M., Puchkov V.N., Seravkin I.B. (2006) Petrological and geochemical features of the Middle Devonian-Early Carboniferous island-arc and collisional vol canics of the Magnitogorsk megazone in a geodynamic context. Lithosphere Russia, (1), 3-21. (In Russ.)

32. Krasnobaev A.A., Rusin A.I., Anfilogov V.N., Valizer P.M., Busharina S.V., Medvedeva E.V. (2017) Zirconology of lherzolites of the Nurali massif. Dokl. AN, 474(5), 593-598. (In Russ.)

33. Krasnobaev A.A., Valizer P.M. (2018) Zircons and zircon geochronology of gabbro of the Nurali massif (Southern Urals). Lithosphere Russia, (4), 574-584. (In Russ.)

34. Kuang G., Xu C., Wei C., Shi A., Li Z., Fan C. (2021) Petro genesis of Paleoproterozoic alkali-feldspar granites associated with alkaline rocks from the Trans-North China Orogen. Precamb. Res., 366, 106-427.

35. Laurent O., Martin H., Moyen J.F., Doucelance R. (2014) The diversity and evolution of late-Archean granitoids: Evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5 Ga. Lithos, 205, 208-235.

36. Li X.-C., Zhou M.-Z., Yang Y.-H., Zhao X.-F., Gao J.-F. (2018) Disturbance of the Sm-Nd isotopic system by metasomatic alteration: A case study of fluorapatite from the Sin Quyen Cu-LREE-Au deposit, Vietnam. Amer. Miner., 103(9), 1487-1496. https://doi.org/10.2138/am-2018-6501

37. López de Luchi M.G., Siegesmund S., Wemmer K., Nolte N. (2017) Petrogenesis of the postcollisional Middle Devonian monzonitic to granitic magmatism of the Sierra de San Luis, Argentina. Lithos, 288-289, 191-213. https://doi.org/10.1016/j.lithos.2017.05.018

38. Lyubetskaya T., Korenaga J. (2007) Chemical composition of earth’s primitive mantle and its variance. J. Geophys. Res., 112, 1-21. https://doi.org/10.1029/2005JB004224

39. Maniar P.D., Piccoli P.M. (1989) Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., 101, 635-643.

40. Maslov A.V., Ronkin Yu.L., Krupenin M.T., Gareev E.Z., Lepikhina O.P. (2003) Propagation sources of the Riphean sedimentation basins of the junction of the Russian Platform and the Southern Urals: synthesis of petro graphic, petro and geochemical data. Dokl. AN, 389(2), 219-222. (In Russ.)

41. Matsui Y., Onuma N., Nagasawa H., Higuchi H., Banno S. (1977) Crystal structure control in trace element partition between crystal and magma. Bull. Soc. Fr. Mineral Crystallogr., 100, 315-324.

42. Misra S., Sarkar S.S. (1991) Linear discrimination among M-, I-, Sand A-granites. Indian J. Earth Sci., 18, 84-93.

43. Mizens G.A. (2002) Sedimentation basins and geodynamic settings in the Late Devonian–Early Permian of the Southern Urals. Ekaterinburg, IGG UrO RAN, 189 p. (In Russ.)

44. Morimoto N. (1988) Nomenclature of Pyroxenes. Mineral. Petrol., 39, 55-76.

45. Muir R.J., Weaver S.D., Bradshaw J.D., Eby G.N., Evans J.A. (1995) The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. Geol. Soc., 152(4), 689-701. https://doi.org/10.1144/gsjgs.152.4.0689

46. Nabelek P., Glascock M. (1995) REE-Depleted Leucogranites, Black Hills, South Dakota: a Consequence of Disequilibrium Melting of Monazite-Bearing Schists. J. Petrol. 36(4), 1055-1071. https://doi.org/10.1093/petrology/36.4.1055

47. Nash W., Crecraft H. (1985) Partition coefficients for trace elements in silicic magmas. Geochim. Cosmochim. Acta, 49, 2309-2322.

48. Nosova A.A., Sazonova L.V., Kargin A.V., Larionova Yu.O., Gorozhanin V.M., Kovalev S.G. (2012) Mesoproterozoic intraplate igneous province of the Western Urals: mainpetrogenetic rock types and their origin. Petrologiya, 20(4), 392-428. (In Russ.)

49. Nosova A.A., Voznyak A.A., Bogdanova S.V., Savko K.A., Lebedeva N.M., Travin A.V., Yudin D.S., Page L., Larionov A.N., Postnikov A.V. (2019) Early Cambrian syenite and monzonite magmatism in the southeast of the East European Platform: petrogenesis and tectonic setting of formation. Petrologiya, 27(4), 357-400. (In Russ.)

50. Patino-Douce A.E. (1999) Generation of metaluminous A-type granites by low pressure melting of calc-alkaline granitoids. Geology, 25, 743-746.

51. Pearce J.A., Harris N.B.W., Tindle A.G. (1984) Trace el ment discrimination diagrams for the tectonic interpretation of granitic rocks. Petrology, 25(4), 956-983. https://doi.org/10.1093/petrology/25.4.956

52. Peccerillo A., Taylor S.R. (1976) Geochemistry of Eocene calc-alkalinevolcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58, 63-81.

53. Peng P., Zhai M.I., Guo J., Zhang H., Zhang Y. (2008) Petrogenesis of Triassic post-collisional syenite plutons in the Sino-Korean craton: an example from North Korea. Geol. Mag., 145, 637-647.

54. Petford N., Atherton M. (1996) Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru. J. Petrol., 37(6), 1491-1521. https://doi.org/10.1093/petrology/37.6.1491

55. Petrographic Code of Russia (2009). Saint Petersburg, VSEGEI, 200 p. (In Russ.)

56. Philpotts J.A., Schnetzler C.C. (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba with application to anorthosite end basalt genesis. Geochim. Cosmochim. Acta, 34, 307-322.

57. Puchkov V.N. (2000) Paleogeodynamics of the Southern and Middle Urals. Moscow; Ufa, Gilem Publ., 146 p. (In Russ.)

58. Puchkov V.N. (2010) Geology of the Urals and the Urals. Actual issues of stratigraphy, tectonics, geodynamics and metallogeny. Ufa, DesignPoligrafService, 280 p. (In Russ.)

59. Puchkov V.N., Ronkin Yu.L., Sergeeva N.D. (2024) Basalts of the Riphean Sequences of the Bashkirian Meganticlinorium, South Urals: New 147Sm‒143Nd and Rb‒Sr ID-TIMS Isotopic Constraints. Dokl. Earth Sci., 518, 1479-1488. https://doi.org/10.1134/S1028334X24602372

60. Pushkarev E.V., Ryazantsev A.V., Tretyakov A.A., Belova A.A., Gottman I.A. (2010) Garnet ultramafites and mafites in the Main Ural Fault zone in the Southern Urals: petrology, age and formation problem. Lithosphere Russia, (5), 101-133. (In Russ.)

61. Rakhimov I.R. (2021) Mineralogy of metasomatized granites of the Kamatalan massif (northern part of the Magnitogorsk megazone). Geol. vestn., 2, 106-121. (In Russ.)

62. Ryazantsev A.V., Novikov I.A., Razumovsky A.A. (2019) Carboniferous continental marginal mafic-ultramafic complex of parallel dikes of the West Magnitogorsk zone (Southern Urals). News of higher educational institutions. Izv. vuzov. Geologiya i razvedka, (3), 42-50. (In Russ.) https://doi.org/10.32454/0016-7762-2019-3-42-50

63. Sajona F.G., Maury R.C., Pubellier M., Leterrier J., Bellon H., Cotten J. (2000) Magmatic source enrichment by slab-derived melts in a young post-collision setting, cen tral Mindanao (Philippines). Lithos, 54(3), 173-206.

64. Salikhov D.N., Kholodnov V.V., Puchkov V.N., Rakhimov I.R. (2019) Magnitogorsk zone of the Southern Urals in the Late Paleozoic: magmatism, fluid regime, metallogeny, geodynamics. Moscow, Nauka Publ., 392 p. (In Russ.)

65. Salikhov D.N., Mitrofanov D.A. (1994) Intrusive magmatism of the Upper Devonian–Lower Carboniferous of the Magnitogorsk megasynclinorium (Southern Urals). Ufa, IG UNTs RAN, 1994. 142 p. (In Russ.)

66. Scarrow J.H., Spadea P., Cortesogno L., Savelieva G., Gag gero L. (2000) Geochemistry of garnet metagabbros from the Mindyak ophiolite massif, Southern Urals. Ofioliti, 25(2), 103-115.

67. Sharpenok L.N., Kostin A.E., Kukharenko E.A. (2013) TAS diagram sum of alkalis silica for chemical classification and diagnostics of plutonic rocks. Regional’naya geologiya i metallogeniya, (56), 40-50. (In Russ.)

68. Siedner G. (1965) Geochemical features of a strongly fractionated alkali igneous suite. Geochim. Cosmochim. Acta, 29(2), 113-137.

69. Sizova E., Hauzenberger C., Fritz H., Faryad S.W., Gerya T. (2019) Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff. Geosci., 9, 499. https://doi.org/10.3390/geosciences9120499

70. Sklyarov E.V., Gladkochub D.P., Donskaya T.V., Iva nov A.V., Letnikova E.F., Mironov A.G., Barash I.G., Bulanov V.A., Sizykh A.I. (2001) Interpretation of geo chemical data. Moscow, Intermet Engineering Publ., 287 p. (In Russ.)

71. Spadea P., D’Antonio M., Kosarev A., Gorozhanina Y., Brown D. (2002) Arc-continent collision in the Southern Urals: Petrogenetic aspects of the forearc-arc complex. Washington DC American Geophysical Union Geophysical Monograph Series, 132, 101-134. https://doi.org/10.1029/132GM07

72. Su Y., Tang H., Sylvester P.J., Liu C., Qu W., Hou G., CongF. (2007) Petrogenesis of Karamaili alkaline A-type granites from East Junggar, Xinjiang (NW China) and their relationship with tin mineralization. Geochem. J., 41(5), 341-357.

73. Tischendorf G., Forster H.-J., Gottesmann B., Rieder M. (2007) True and brittle micas: compo-sition and solidsolution series. Mineral. Mag., 71, 285-320.

74. Volchek E.N., Chervyakovsky V.S. (2017) On the petrogeochemistry of volcanic rocks of siliceous composition from the Early Carboniferous deposits of the Mag nitogorsk zone of the Southern Urals. Tr. IGG UrO RAN, vyp. 164, 104-109. (In Russ.)

75. Wang Q., Xu J.-F., Jian P., Bao Z.-W., Zhao Z.-H., Li C.-F., Xiong X.-L., Ma J.-L. (2006) Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. J. Petrol., 47(1), 119-144. https://doi.org/10.1093/petrology/egi070

76. Wang Q., Zhao Z.-H., Bao Z.-W., Xu J.-F., Liu W., Li C.F., Bai Z.-H., Xiong X.L. (2004) Geochemistry and Petrogenesis of the Tongshankou and Yinzu Adakit ic Intrusive Rocks and the Associated Porphyry Cop per-Molybdenum Mineralization in Southeast Hubei, East China. Res. Geol., 54, 137-152. https://doi.org/10.1111/j.1751-3928.2004.tb00195.x

77. Whalen J.B., Curri K.L., Chappell B.W. (1987) A-Type Granites Geochemical Characteristics, Discrimination and Petrogenesis. Contrib. Mineral. Petrol., 95, 407-419.

78. Wittke W., Sykes R. (1990) Rock mechanics. Berlin, Springer, 587 p

79. Wu F., Liu X., Jia W., Lei Y. (2017) Highly fractionated granites: Recognition and research. Sci. China Earth Sci., 60, 1201-1219. https://doi.org/10.1007/s11430-016-5139-1

80. Zhdanov A.V., Obodov V.A., Makaryev L.B., Matyushkov A.D., Molchanova E.V., Stromov V.A., Polyanskaya T.L., Kaltashev A.P. (2003) Additional geological study of the scale 1 : 200 000 and preparation for publication of the state geological map-200 of the territory of sheet N-40-XXVIII (Uchalinskaya area), 284 p. (In Russ.)

81. Znamensky S.E., Kholodnov V.V., Danilenko S.A. (2014) Rb-Sr data on wallrock metasomatites of the Maly Karan gold deposit (Southern Urals). Geol. sb., 11, 202-205. (In Russ.)

82. Zorin Yu.A., Turutanov E.Kh., Kozhevnikov V.M., Rasskazov S.V., Ivanov A.V. (2006) On the nature of Ceno zoic upper mantle plumes in Eastern Siberia (Russia) and Central Mongolia. Geologiya i geofizika, 47(10), 1060-1074. (In Russ.)

83.


Review

For citations:


Rakhimov I.R., Samigullin A.A., Kholodnov V.V., Shagalov E.S. Petrogenesis and geodynamic regime of monzonite and granite massifs of the Balbuk area (Southern Urals) according to whole-rock geochemistry, Sr-Nd isotopy, and Rb-Sr geochronology. LITHOSPHERE (Russia). 2025;25(5):1074-1103. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-5-1074-1103

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)