On the relationship between αAl indices and the ratios of a number of trace elements – indicators of rock composition in paleo-catchments (on the example of the Riphean and Vendian clay rocks of the Southern and Middle Urals and the Shkapovo-Shikhan depression).
https://doi.org/10.24930/2500-302X-2025-25-5-1023-1040
Abstract
Research subject. Clay rocks (clay siltstones, shales and mudstones) of a number of Riphean stratigraphic units of the Bashkir megaanticlinorium, as well as the Vendian Shkapovo-Shikhan depression and the Kvarkush-Kamennogorsk megaanticlinorium. Methods. Calculation of α Al values based on the data on the bulk chemical composition of clay rocks and the analysis of their correlation links with the ratios (e.g., Th/Sc, (La/Yb)N, etc.) of a number of trace elements that are indicators of rock composition in paleo-catchments. In this case, any statistically significant correlation between the alpha index values and the indicator ratios was considered to be a consequence of the control of the α index values by the rock composition in paleo-catchments, and vice versa. Results. For both relatively small (7–8 analyses) and medium (22 or more analyses) analytical datasets, quite different relationships were established between the α Al indices and the ratios of the elements – indicators of the composition of rocks that make up the paleo-catchments. Conclusions. Similar to many other exospheric lithogeochemical indicators, the use of α indices without analyzing the influence of various factors thereon does not provide correct information on the intensity of weathering
Keywords
About the Author
A. V. MaslovRussian Federation
Andrey V. Maslov
References
1. Ablizin B.D., Klyuzhina M.L., Kurbatskaya F.A., Kurbatsky A.M. (1982) Upper Riphean and Vendian of the western slope of the Middle Urals. Moscow, Nauka Publ., 140 p. (In Russ.)
2. Aksenov E.M. (1998) History of geological development of the East European platform in the late Proterozoic. Dr. geol. and min. sci. diss. St.Petersburg, IGGD RAN, 106 p. (In Russ.)
3. Anfimov L.V. (1997) Lithogenesis in Riphean sedimentary strata of the Bashkir megaanticlinorium (South Urals). Ekaterinburg, UrO RAN, 290 p. (In Russ.)
4. Belokon T.V., Gorbachev V.I., Balashova M.M. (2001) Structure and oil and gas potential of the Riphean-Vendian deposits in the east of the Russian platform. Perm, IPK “Zvezda” Publ., 108 p. (In Russ.)
5. Bouchez J., Lupker M., Gaillardet J., France-Lanord C., Maurice L. (2011) How important is it to integrate riverine suspended sediment chemical composition with depth? Clues from Amazon River depth-profiles. Geochim. Cosmochim. Acta, 75, 6955-6970. https://doi.org/10.1016/j.gca.2011.08.038
6. Condie K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol., 104, 1-37. https://doi.org/10.1016/0009-2541(93)90140-E
7. Condie K.C., Wronkiewicz D.A. (1990) The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth Planet. Sci. Lett., 97(3-4), 256-267. https://doi.org/10.1016/0012-821X(90)90046-Z
8. Cullers R.L. (1995) The control on the major and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A. Chem. Geol., 123(1-4), 107-131. https://doi.org/10.1016/0009-2541(95)00050-V
9. Cullers R.L. (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem. Geol., 191(4), 305-327. https://doi.org/10.1016/S0009-2541(02)00133-X
10. Deng K., Yang S., Guo Y. (2022) A global temperature control of silicate weathering intensity. Nature communications, 13, 1781. https://doi.org/10.1038/s41467-022-29415-0
11. Gaillardet J., Dupré B., Allègre C.J. (1999) Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer? Geochim. Cosmochim. Acta, 63, 4037-4051. https://doi.org/10.1016/S0016-7037(99)00307-5
12. Garzanti E., Andò S., France-Lanord C., Galy V., Censi P., Vignola P. (2011) Mineralogical and chemical variabili ty of fluvial sediments. 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh). Earth Planet. Sci. Lett., 302, 107-120. https://doi.org/10.1086/719166
13. Garzanti E., Bayon G., Dinis P., Vermeesch P., Pastore G., Resentini A., Barbarano M., Ncube L., Van Niekerk H.J. (2022) The Segmented Zambezi Sedimentary System from Source to Sink. 2. Geochemistry, Clay Minerals, and Detrital Geochronology. J. Geology, 130, 171-208. https://doi.org/10.1086/719166
14. Garzanti E., Padoan M., Setti M., López-Galindo A., Villa I.M. (2014) Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chem. Geol., 366, 61-74. https://doi.org/10.1016/j.chem-geo.2013.12.016
15. Garzanti E., Padoan M., Setti M., Najman Y., Peruta L., Villa I.M. (2013) Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochem. Geophys. Geosyst., 14(2), 292-316. https://doi.org/10.1002/ggge.20060
16. Grazhdankin D.V., Maslov A.V., Krupenin M.T., Ronkin Yu.L. (2010) Sedimentary systems of the Sylvitsa series (Upper Vendian of the Middle Urals). Ekaterinburg, UrO RAN, 280 p. (In Russ.)
17. Interpretation of geochemical data. (2001) (Ed. by E.V. Sklyarov). Moscow, Intermet Engineering, 288 p. (In Russ.)
18. Lagutenkova N.S., Chepikova I.K. (1982) Upper Precambrian deposits of the Volga-Ural region and prospects for their oil and gas potential. Moscow, Nauka Publ., 110 p. (In Russ.)
19. Maslov A.V. (2005) Sedimentary rocks: methods of studying and interpreting the obtained data. Ekaterinburg, UGGU, 289 p. (In Russ.)
20. Maslov A.V. (2012) Lithogeochemistry of terrigenous rocks of the Upper Precambrian of the Volga-Ural region. Ekaterinburg, RIO UrO RAN, 248 p. (In Russ.)
21. Maslov A.V. (2025) α Al E-indices of Riphean clay rocks of the Southern Urals and weathering features (first attempt at analysis). Lithosphere (Russia), 25(1), 96-113. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-1-96-113
22. Maslov A.V., Podkovyrov V.N. (2023) Intensity of chemical weathering in the Late Precambrian: new data on the Riphean stratotype (Southern Urals). Stratigr. Geol. Korrel., 31(2), 109-124. (In Russ.) https://doi.org/10.31857/ S0869592X23020060
23. Maslov A.V., Gareev E.Z., Krupenin M.T., Demchuk I.G. (1999) Fine-grained aluminosilicoclastics in the Upper Precambrian section of the Bashkir meganticlinori um (towards the reconstruction of formation conditions). Ekaterinburg, IGG UrO RAN, 324 p. (In Russ.)
24. Maslov A.V., Melnichuk O.Yu., Mizens G.A., Titov Yu.V., Chervyakovskaya M.V. (2020) Reconstruction of the composition of rocks of source provinces. Article 2. Litho and isotope-geochemical approaches and methods. Lithosphere (Russia), 20(1), 40-62. (In Russ.) https://doi.org/10.24930/1681-9004-2020-20-1-40-62
25. Maslov A.V., Nozhkin A.D., Podkovyrov V.N., Letnikova E.F., Turkina O.M., Grazhdankin D.V., Dmitrieva N.V., Isherskaya M.V., Krupenin M.T., Ronkin Yu.L., Gareev E.Z., Veshcheva S.V., Lepikhina O.P. (2008) Geochemistry of fine-grained terrigenous rocks of the Upper Precambrian of Northern Eurasia. Ekaterinburg, UrO RAN, 274 p. (In Russ.)
26. McLennan S.M., Fryer B.J., Young G.M. (1979) The geochemistry of the carbonate-rich Espanola Formation (Huronian) with emphasis on the rare earth elements. Can. J. Earth Sci., 16, 230-239. https://doi.org/10.1139/e79-022
27. McLennan S.M., Hemming S.R., McDaniel D.K., Hanson G.N. (1993) Geochemical approaches to sedimentation, provenance and tectonics. Processes controlling the composition of clastic sediments (Ed. by M.J. Johnsson, A. Basu). Geol. Soc. Amer. Spec. Pap., 284, 21-40. https://doi.org/10.1130/SPE284-p21
28. Oil and gas bearing and prospective complexes of the central and eastern regions of the Russian platform. (1969) V. I. Pre-Ordovician deposits of the central and eastern regions of the Russian platform. Leningrad, Nedra Publ., 168 p. (In Russ.)
29. Postnikova I.E. (1977) Upper Precambrian of the Russian Plate and its oil potential. Moscow, Nedra Publ., 222 p. (In Russ.)
30. Riphean stratotype. Stratigraphy. Geochronology. (1983) (Ed. by B.M. Keller, N.M. Chumakov). Moscow, Nauka Publ., 184 p. (In Russ.)
31. Rudnick R.L., Gao S. (2014) Composition of the Continental Crust. Treatise on Geochemistry (Ed. by H.D. Holland, K.K. Turekian). Oxford, Elsevier, 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
32. Solovov A.P., Matveev A.A. (1985) Geochemical methods for searching for ore deposits. Moscow, MGU, 232 p. (In Russ.)
33. Taylor S.R., McLennan S.M. (1985) The Continental Crust: Its Composition and Evolution: an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford, Blackwell, 312 p.
34. Wronkiewicz D.J., Condie K.C. (1990) Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: cratonic evolution during the early Proterozoic. Geochim. Cosmochim. Acta, 54(2), 343-354. https://doi.org/10.1016/0016-7037(90)90323-D
35. Yudovich Ya.E., Ketris M.P. (2000) Fundamentals of lithochemistry. St.Petersburg, Nauka Publ., 479 p. (In Russ.)
36. Yudovich Ya.E., Ketris M.P. (2015) Geochemical and mineralogical indicators of volcanic products in sedimentary strata. Moscow; Berlin, Direct-Media Publ., 724 p. (In Russ.)
Review
For citations:
Maslov A.V. On the relationship between αAl indices and the ratios of a number of trace elements – indicators of rock composition in paleo-catchments (on the example of the Riphean and Vendian clay rocks of the Southern and Middle Urals and the Shkapovo-Shikhan depression). LITHOSPHERE (Russia). 2025;25(5):1023-1040. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-5-1023-1040





































