Preview

LITHOSPHERE (Russia)

Advanced search

Minerageny of modern continental carbonates in the Perm Region

https://doi.org/10.24930/2500-302X-2025-25-5-1007-1022

Abstract

Research subject. Deposits and occurrences of calcareous tufa, spring waters with a mineralization of more than 1 g/dm 3. Aim. Identification of the minerageny features of continental carbonate formation. Materials and methods. An analysis of the chemical composition of spring waters database compiled on the basis of hydrogeological surveys conducted in 1966–1992 at a scale of 1:200 000 in the Perm Region and the Catalogue of Deposits and Occurrences of Minerals of the Perm Region. Interpretation of the digital elevation model to identify neotectonic elements. Results. A mineragenic model of continental carbonate formation was reconstructed, including: (a) mobilization of calcium by underground waters on lifted blocks composed of carbonate-and-sulphate evaporites and groundwater discharge in adjacent trough blocks favorable for the slow flow of surface water; (b) essentially chemical deposition of subaqueous calcareous tufa at the site of groundwater discharge mainly biochemical precipitation of aquatic calcareous tufa in the lake, oxbow lakes and mean dering rivers, favorable for the activity of plants and living organisms. Conclusions. The zoning of calcareous tufa deposits on a neotectonic basis was carried out. The greatest contribution of sulphate calcium waters to the formation of calcareous tufa deposits was shown. The maximum possible quantity of chemogenic and biogenic calcium carbonate that can precipitate from individual springs in 100 years was calculated, amounting to 0.0001–1 million tons

About the Authors

T. A. Utkina
Mining Institute, UB RAS
Russian Federation


D. E. Trapeznikov
Mining Institute, UB RAS
Russian Federation


I. I. Chaikovskiy
Mining Institute, UB RAS
Russian Federation


References

1. Alekin O.A. (1953) Hydrochemistry Fundamental. Leningrad, Gidrometizdat Publ., 296 p. (In Russ.)

2. Arenas-Abad С. (2022) A multi-scale approach to laminated microbial deposits in non-marine carbonate environments through examples of the Cenozoic, north-east Iberian Peninsula, Spain. Deposit. Record, 8(1), 67-101. https://doi.org/10.1002/dep2.145

3. Auqué L.F., Arenas C., Osácar M.C., Pardo G., Sancho C., Vazques-Brbez M. (2014) Current tufa sedimentation in a changing-slope valley: The River Añamaza (Iberian Range, NE Spain). Sediment. Geol., 303, 26-48. http://doi.org/10.1016/j.sedgeo.2014.01.008

4. Auqué L.F., Osácar M.C., Arenas C., Cukrov N., Lojen S., Sancho C. (2023) Controls on Mg/Ca Ratios in Recent Stromatolites: Insights from Fluvial Systems in the Iberian Range (Spain). Minerals, 13(1), 57. https://doi.org/10.3390/min13010057

5. Brikov A.V., Markin A.N. (2018) Oilfield Chemistry: A Practical Guide to Combating Salt Formation. Moscow, De’Libri Publ., 335 p. (In Russ.)

6. Chaikovskiy I.I. (2011) Modern biogenic mineral formation in the Shakva River basin. Vestn. Perm. NTs, 1, 4-8. (In Russ.)

7. Durov S.A. (1948) Classification of natural waters and graphic representation of their composition. Dokl. AN SSSR, 1, 87-90. (In Russ.)

8. Fubelli G., Dramis F. (2023) Calcareous Tufa: Deposition and Erosion during Geological Times. Appl. Sci., 13(7), 4410. https://doi.org/10.3390/app13074410

9. Gorbunova K.A., Andreychuk V.N., Kostarev V.P., Maksimovich N.G. (1992) Karst and caves of the Perm Region.Perm, Izd-vo Perm. un-ta, 200 p. (In Russ.)

10. Katkova V.I., Mityusheva T.P., Teteryuk B.Yu. (2019) Features of pondweeds mineralization of the Vy’m River (Komi Republic). Izv. Komi NTs UrO RAN, 1(37), 69-75. (In Russ.) https://doi.org/10.19110/1994-5655-2019-1-69-75

11. Kokarovets V.K. (1992) Resources and geology of Holocene agrocarbonates of the Permian Cis-Urals. Ekaterinburg, Uralgeologiya Publ., 216 p. (In Russ.)

12. Langelier W.F. (1936) The analytical control of anticorrosion water treatment. J. Amer. Water Works Assoc., 28(10), 1500-1521. https://doi.org/10.1002/j.1551-8833.1936.tb13785.x

13. Mercedes-Martín R., Rao A., Rogenson M., Sánchez-Román M. (2020) Effects of salinity, organic acids and alkalinity on the growth of calcite spherulites: Implications for evaporitic lacustrine sedimentation. Deposit. Record, 8(1), 143-164. https://doi.org/10.1002/dep2.136

14. Ovchinnikov L.N. (1988) Formation of ore deposits. Moscow, Nedra Publ., 255 p. (In Russ.)

15. Pedley H.M., Rogerson M., Middleton R. (2009) Freshwater calcite precipitates from in vitro mesocosm flume experiments: a case for biomediation of tufas. Sedimentology, 56(2), 511-527. https://doi.org/10.1111/j.1365-3091.2008.00983.x

16. Pentecost A. (2005) Travertine. Berlin, Springer, 445 p. https://doi.org/10.1017/S0016756806002822

17. Perel’man A.I., Kasimov N.S. (1999) Landscape Geochemistry. Moscow, MGU, 610 p. (In Russ.)

18. Perri E., Manzo E., Tucker M.E. (2012) Multi-scale study of the role of the biofilm in the formation of minerals and fabrics in calcareous tufa. Sediment. Geol., 263-264, 16-29. https://doi.org/10.1016/j.sedgeo.2011.10.003

19. Provorov V.M. (1973) The main features of the tectonics of the Lower Permian deposits and its connection with the deep structure of the Middle Urals. Nizhnepermskiye otlozheniya Kamskogo Predural’ya: Tr. VNIGNI, vyp. 118, 28-48. (In Russ.)

20. Rogerson M., Pedley H.M., Wadhawan J.D., Middleton R. (2008) New insights into biological influence on the geochemistry of freshwater carbonate deposits. Geochim. Cosmochim. Acta, 72(20), 4976-4987. https://doi.org/10.1016/j.gca.2008.06.030

21. Shvartsev S.L. (2008) Geochemistry of Fresh Groundwater in the Main Landscape Zones of the Earth. Geochem. Int., 46, 1285-1398. https://doi.org/10.1134/S0016702908130016

22. Shvartsev S.L., Lepokurova O.E., Kopylova Yu.G. (2007) Geochemical mechanisms of travertine formation from fresh waters in southern Siberia. Rus. Geol. Geophys., 48(8), 659-667. https://doi.org/10.1016/j.rgg.2007.07.003

23. Silaev V.I., Chaikovskiy I.I., Mityusheva T.P., Khazov A.F. (2008) Modern carbonate mineralizations on evaporative and sedimentation-diagenetic isotope-geochemical barriers. Syktyvkar, Geoprint Publ., 68 p. (In Russ.)

24. Skillman H.L., McDonald J.P., Stiff H.A. (1969) A Simple, Accurate, Fast Method for Calculating Calcium Sulfate Solubility in Oilfield Brine. American Petroleum Institute, 906-14-I.

25. Strakhov N.M. (1954) Formation of sediments in modern basin. Moscow, AN SSSR, 792 p. (In Russ.)

26.


Review

For citations:


Utkina T.A., Trapeznikov D.E., Chaikovskiy I.I. Minerageny of modern continental carbonates in the Perm Region. LITHOSPHERE (Russia). 2025;25(5):1007-1022. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-5-1007-1022

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)