Magnesite microbialites of the Kunduzak occurrence in the weathering crust of the Khalilovsky ultrabasite massif (Southern Urals)
https://doi.org/10.24930/1681-9004-2025-25-4-977-1000
EDN: RQXAIV
Abstract
Research subject. Previously unknown microbialitic magnesites of the Kunduzak occurrence of the Khalilovsky ultrabasite massif of the Southern Urals.
Aim. On the example of siliceous, phosphate and carbonate biolites, to consider the problem of microbial rock formation and to analyze the role of cyanobacterial biota in this process. Despite successful laboratory experiments on mineralization of cyanobacterial mats, observations in nature show that the productivity of cyanobacteria is not determined by the concentrations of chemical elements in the habitat. Under the same conditions one and the same population of cyanobacteria behaves neutrally or actively accumulates mineral matter. Moreover, the accumulated element is not always dominant in their habitat. Thus, there is every reason to assert that the problem of cyanobacterial rock and ore formation has not been fully solved yet, and additional studies are required for its final closure.
Materials and methods. During the geological mapping of the Kunduzak occurrence, samples of magnesites were taken, which were studied by ISP, scanning electron microscopy, as well as by phase, structural and fluorescence X-ray analysis, in addition to studies in transparent sections. The work was carried out in the laboratories of RUDN, IMGRE, PIN RAS, and RGGRU.
Results. A rich complex of mineralized bacterial forms, which are a fundamental feature of the structure of magnesites, was revealed. These are fragments of cyanobacterial mats and biofilms, cocciform and bacilliform bacteria, remains of glycocalyx, covers of filamentous microfossils, as well as microbiota of unclear systematic position. The development of biomorphosis in magnesites allows us to draw a parallel with the processes of modern magnesite accumulation associated with the activity of the microbial community of cyanobacterial mats. The latter circumstance becomes an irrefutable argument of biogenic (biolitic) nature of magnesite of the Kunduzak occurrence.
Conclusions. In the sediments of the pre-Jurassic weathering crust of ultrabasites, microbialitic magnesites previously undescribed in the literature have been revealed. They belong to the “amorphous” industrial type of ores, and form a bed deposit, which cardinally differs from the neighboring deposits, where magnesite is concentrated in the form of stockwork bodies. The biolitic nature of magnesites is confirmed by a variety of bacterial structures, and an additional feature of these rocks, obviously, are the established anomalies of Dy, Yb and Lu. Microbialitic magnesites were formed in several stages. Their inferred resources are estimated at 130 thousand tons.
About the Authors
A. F. GeorgievskyRussian Federation
Aleksei F. Georgievsky
6 Miklukho-Maklay st., Moscow 117198
E. A. Zhegallo
Russian Federation
Elena A. Zhegallo
123 Profsoyuznaya st., Moscow 117647
A. A. Georgievsky
Russian Federation
Aleksandr A. Georgievsky
6 Miklukho-Maklay st., Moscow 117198
V. M. Bugina
Russian Federation
Viktoriya M. Bugina
6 Miklukho-Maklay st., Moscow 117198
P. E. Kailachakov
Russian Federation
Platon E. Kailachakov
35 Staromonetny lane, Moscow 119017
K. A. Georgievskaya
Russian Federation
Klavdiya A. Georgievskaya
1 Leninskie Gory, Moscow 119991
V. E. Markov
Russian Federation
Vladimir E. Markov
6 Miklukho-Maklay st., Moscow 117198
E. V. Karelina
Russian Federation
Elena V. Karelina
6 Miklukho-Maklay st., Moscow 117198
References
1. Amosov R.A., Vasin S.L. (1993) Gold microfossils. Ores and Metals, 36, 101-107. (In Russ.)
2. Antoshkina A.I. (2011) Bacterial rock formation – the reality of modern research methods. Uchen. Zap. Kazan. Universiteta, 153(4), 114-126. (In Russ.)
3. Astaf’eva M.M., Vickers-Rich P., Vilde A., Rozanov A.Y., Khuver R. (2005) On the possibility of biogenic formation of Middle Proterozoic polymetallic ores from the McArthur River deposit in Northern Australia. Paleontol. Zhurnal, 6, 3-7. (In Russ.)
4. Avdonin V.V., Zhegallo E.A., Sergeeva N.E. (2019) Bacterial nature of oxide ferromanganese ores of the World Ocean. Moscow, GEOS Publ., 284 p. (In Russ.)
5. Balashov Y.A. (1976) Geochemistry of rare earth elements. Moscow, Nauka Publ., 268 p. (In Russ.)
6. Baturin G.N. (1978) Phosphorites on the ocean floor. Moscow, Nauka Publ., 231 p. (In Russ.)
7. Bawden T.M., Einaudi M.T., Bostick B.C., Meibom A., Wooden J., Norby J.W., Chamberlain C.P. (2003) Extreme 34S depletions in ZnS at the Mike gold deposit, Carlin Trend, Nevada: Evidence for bacteriogenic supergene sphalerite. Geology, 31(10), 913. https://doi.org/10.1130/g19831.1
8. Bénézeth P., Saldi G.D., Dandurand J.L., Schott J. (2011) Experimental Determination of the Solubility Product of Magnesite at 50 to 200°C. Chem. Geol., 286(1-2), 21-31. https://doi.org/10.1016/J.CHEMGEO.2011.04.016
9. Benning L.G., Phoenix V.R., Mountain B.W., Lappin-Scott H. (2005) Biosilicification: the role of cyanobacteria in silica sinter deposition. (Eds G. Gadd, K. Semple). Micro-Organisms and Earth Systems. Society for General Microbiology Symposia. Cambridge University Press, 131-150. https://doi.org/10.1017/CBO9780511754852.008
10. Betekhtin A.G. (2023) Course of Mineralogy. Moscow, KDU Publ., 736 p. (In Russ.)
11. Biondi J.C., Lopez M. (2017) Urucum neoproterozoic–cambrian manganese deposits (MS, Brazil): biogenic participation in the ore genesis, geology, geochemistry, and depositional environment. Ore Geol. Rev., 91, 335-386. https://doi.org/10.1016/j.oregeorev.2017.09.018
12. Blyuman A.A. (2009) Biogenic and hydrobiogenic gold of linear weathering crust. Region. Geol. Metallogeniya, 37, 94-106. (In Russ.)
13. Davies P.J., Bubela B. (1973) The transformation of nesquehonite into hydromagnesite. Chem. Geol., 12(4), 289-300. https://doi.org/10.1016/0009-2541(73)90006-5
14. Deelman J.C. (2021) Magnesite, dolomite and carbonate groups. [Research Report] (formerly) Technische Universiteit Eindhoven. https://hal.science/hal-03412979v2
15. Deelman J.C. (1999) Low-temperature nucleation of magnesite and dolomite. Neues Jahrbuch für Mineralogie. Monatshefte, 289-302.
16. Deelman J.C. (2012) Are bacteria capable of precipitating magnesite? Periodico di Mineralogia, 81, 225-235. https://doi.org/10.2451/2012PM0013
17. Dobretsov N.L., Zhmodik S.M., Lazareva E.V., Bryanskaya A.V., Ponomarchuk V.A., Sarygool B.Y., Kirichenko I.S., Tolstov A.V., Karmanov N.S. (2021) Structural and morphological signs of microorganism participation in the formation of Nb-REE-rich ores of the Tomtor deposit (Russia). Dokl. Earth Sci., 496(2), 154-157. (In Russ.)
18. Doinikova O.A., Petrov V.A. (2022) Ore-forming biogenic factor in the formation of sandstone-type uranium deposits. Geol. Ore Depos., 64(4), 406-420. (In Russ.)
19. Dos Anjos A.P.A., Sifeddine A., Sanders C.J. et al. (2011) Synthesis of magnesite at low temperature. Carbonates Evaporites, 26, 213-215. https://doi.org/10.1007/s13146-011-0063-4
20. Eganov E.A. (1988) Phosphorite formation and stromatolites. Novosibirsk, IGIG Publ., 89 p. (In Russ.)
21. Eugster P. (1970) Chemistry and origin of the brines of Lake Magadi, Kenya. Mineral. Soc. Amer. Spec. Pap., 3, 213-235.
22. Evensen N.M., Hamilton P.J., O’Nions R.K. (1978) Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta, 42, 1199-1212.
23. Fedorov V.S. (1951) Scientific bases of drilling modes. Moscow; Leningrad, Gostoptekhizdat Publ., 248 p. (In Russ.)
24. Friedman I., Smith G.I., Hardcastle K.G. (1976) Studies of quaternary saline lakes-II. Isotopic and compositional changes during desiccation of the brines in Owens Lake, California, 1969–1971. Geochim. Cosmochim. Acta, 40(5), 501-511. https://doi.org/10.1016/0016-7037(76)90218-0
25. Georgievskii A.F., Bugina V.M. (2019) Aphanitic genetic type of industrial phosphorites and conditions of their formation in the Okino-Khubsugul basin. Moscow, RUDN Publ., 294 p. (In Russ.)
26. Georgievskii A.F., Zhegallo E.A., Bugina V.M. (2019) Microbiota of bauxites from the Ewa deposit (Guinea-Bissau). Litol. Polez. Iskop., (6), 557-567. (In Russ.)
27. Gerasimenko L.M. (2002) Actualistic paleontology of cyano-bacterial communities. Doct. … biol. sci. diss. Moscow, Institute of Microbiology, RAS, 70 p. (In Russ.)
28. Gerasimenko L.M., Dubinin A.V., Zavarzin G.A. (1996) Alkalophilic cyanobacteria of soda lakes of Tuva and their ecophysiology. Microbiology, 65(6), 844-849. (In Russ.)
29. Gerasimenko L.M., Goncharova I.V., Zaitseva L.V. (1998) Effect of phosphorus content in the medium on growth and mineralization of cyanobacteria. Microbiologiya, 67(2), 254-259. (In Russ.)
30. Gerasimenko L.M., Goncharova I.V., Zhegallo E.A., Zavarzin G.A., Zaitseva L.V., Tikhomirova N.S., Orleanskii V.K., Rozanov A.Y., Ushatinskaya G.T. (1996) Process of mineralization (phosphatization) of filamentous cyanobacteria. Litol. Polez. Iskop., (2), 208-214. (In Russ.)
31. Gerasimenko L.M., Ushatinskaya G.T. (2002) Cyanobacteria, cyanobacterial communities, mats, biofilms. Bacterial Paleontology. Moscow, PIN RAN Publ., 36-47. (In Russ.)
32. Gerasimenko L.M., Ushatinskaya G.T. (2002) Experiments on fossilization. Phosphatization. Bacterial paleontology. Moscow, PIN RAN Publ., 59-66. (In Russ.)
33. Gerasimenko L.M., Zavarzin G.A., Rozanov A.Y., Ushatinskaya G.T. (1999) The role of cyanobacteria in the formation of phosphate minerals. Zhurnal Obshchei Biologii, 60(4), 415-430. (In Russ.)
34. Gischler E., Gibson M.A., Oschmann W. (2008) Giant Holocene Freshwater Microbialites, Laguna Bacalar, Quintana Roo, Mexico. Sedimentology, 55, 1293-1309. https://doi.org/10.1111/j.1365-3091.2007.00946.x
35. Goncharova I.V., Gerasimenko L.M. (1993) Dynamics of inorganic phosphorus consumption by Microcoleus chthonoplastes cells. Microbiologiya, 62(4), 1048-1055. (In Russ.)
36. Hänchen M., Prigiobbe V., Baciocchi R., Mazzotti M. (2008) Precipitation in the Mg-carbonate system-effects of temperature and CO2. Chem. Engin. Sci., 63(4), 1012-1028. https://doi.org/10.1016/j.ces.2007.09.0
37. Hirst J.F. (2013) Sedimentology, diagenesis and hydrochemistry of the saline, alkaline lakes on the Cariboo Plateau, Interior British Columbia, Canada. PhD thesis, University of Saskatchewan, Saskatoon.
38. Ilalova R.K. (2017) Continental weathering in the Mesozoic: features of mineral composition of profiles and distribution of rare earth elements. Gornyi Informationno-analiticheskii Byulleten’, 10, 226-237. (In Russ.)
39. Il’in A.V. (2008) Ancient (Ediacaran) phosphorites. Tr. GIN RAN, vyp. 587. Moscow, GEOS Publ., 160 p. (In Russ.)
40. Ivanov V.V. (1994) Ecological geochemistry of elements. B. 1, 2. Moscow, Nedra Publ., 302 p. (In Russ.)
41. Ivlev N.F., Pustyl’nikov A.M. (1982) Magnesite in Vendian-Lower Cambrian saline sediments of the south of the Siberian Platform. Geol. Geophys., (1), 136-141. (In Russ.)
42. Jones B.E., Grant W.D., Duckworth A.W., Owenson G.G. (1998) Microbial diversity of soda lakes. Extremophiles, 2(3), 191-200. https://doi.org/10.1007/s007920050060
43. Jones B.F., Eugster H.P., Rettig S.L. (1977) Hydrochemistry of the Lake Magadi basin, Kenya. Geochim. Cosmochim. Acta, 41(1), 53-72. https://doi.org/10.1016/0016-7037(77)90186-7
44. Kanaeva Z.K., Kanaev A.T. (2012) Microbiocenosis of chemolithotrophic bacteria of in-situ leaching solutions of the Karamurun uranium deposit. Fundamental’nye Issledovaniya, 5(1), 153-157. (In Russ.)
45. Kazakov A.V., Tikhomirova M.M., Plotnikova V.I. (1957) System of carbonate equilibria (dolomite, magnesite). Tr. IGN. vyp. 152, Geol. Ser., (64), 13-58. (In Russ.)
46. Kazmierczak J., Kempe S., Kremer B., Lopez-Garcia P., Moreira D., Tavera R. (2011) Hydrochemistry and microbialites of the alkaline crater lake Alchichica. Mexico Facies, 57, 543-570.
47. Kempe S., Kazmierczak J., Landmann G. et al. (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature, 349, 605-608. https://doi.org/10.1038/349605a0
48. Khairullina G.Z., Shevelev A.I., Krutikov V.F., Urasin M.A., Rusina L.P. (1990) Shadow stromatolite structures of magnesites – results of recrystallization processes. Mineralogical crystallography, crystallogenesis, crystallosynthesis. (Information materials). Syktyvkar, UrO RAN Publ., 70-71. (In Russ.)
49. Krauskopf K. (1958) Sedimentary deposits of rare metals. Problems of ore deposits. Moscow, Inostrannaya literature Publ., 375-478. (In Russ.)
50. Krupenin M.T. (2005) Application of REE for genetic interpretation of formations of crystalline magnesite deposits in Northern Eurasia. Tr. IGG UrO RAN, vyp. 152, 215-222. (In Russ.)
51. Krylov I.N., Tikhomirova N.S., Orleanskii V.K. (1988) Toward the formation of siliceous microfossils. Paleontol. Zhurnal, (3), 249-259. (In Russ.)
52. Kuznetsov V.G. (2004) Relation of cyanophyte evolution and stratigraphic placement of magnesites. Izv. Vyssh. Uchebn. Zaved. Geologiyа i Razvedka, (4), 30-35. (In Russ.)
53. Lein A.Y., Moskalev L.I., Bogdanov Y.A., Sagalevich A.M. (2000) Ocean hydrothermal systems and life. Priroda, (5), 47-55. (In Russ.)
54. Levitskii V.I., Reznitskii L.Z., Levitskii I.V. (2019) Geochemistry of carbonate rocks of Early Precambrian Phanerozoic metamorphic complexes of Eastern Siberia, Northwest Siberia, and Pamir. Geochimiya, 64(4), 409-426. (In Russ.)
55. Manukovskii S.V., Belyaev V.I. (2000) To the question of bacterial-algal nature of some types of phosphorites of yolk phosphorites and phosphorite-bearing placers. Vestnik Voronezh. Universiteta. Geologiya, 5(10), 41-47. (In Russ.)
56. Maslov A.V. (2016) Neoproterozoic-Cambrian phosphorites and paleoceanography: data on the distribution of rareearth elements. Tr IGG UrO RAN, vyp. 163, 102-107. (In Russ.)
57. Moiseenko V.G., Kuimova N.G., Makeeva T.B., Pavlova L.M. (1999) Formation of biogenic gold by mycelial fungi. Dokl. Earth Sci., 364(4), 535-537. (In Russ.)
58. Möller P. (1989) Nucleation processes of magnesite. (Ed. P. Möller). Magnesite, 287-292. Geology, mineralogy, geochemistry, formation of Mg-carbonates. Berlin, Stuttgart, Borntraeger, 300 p.
59. Neskoromnykh V.V. (2012) Designing wells for solid minerals. Krasnoyarsk, SFU Publ., 294 p. (In Russ.)
60. Nikiforov A.V. (2003) Report on exploration of Khalilovskoye deposit of amorphous magnesite in the Gaisky district of the Orenburg region in 1999–2002. Orsk, 315 p. (In Russ.)
61. Novikov V.M., Bortnikov N.S., Boeva N.M., Zhukhlistov A.P., Zhegallo E.A., Soboleva S.V., Novakova A.A. (2017) Biogenic iron oxide nanominerals in the weathering crusts of basalts of continental margins of East Asia on the example of the Russian Far East and Vietnam. Article 3. Magnetite. Vestnik VGU. Ser.: Geol., (2), 61-65. (In Russ.)
62. Novoselov A.K., Lim A., Goetschl A., Loiko K., Mavromatis S.V., Pokrovsky O. (2019) Mg-Rich Authigenic Carbonates in Coastal Facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation. Minerals, 9(12), 763. https://doi.org/10.3390/min9120763
63. Okishev K.Y. (2007) Crystallochemistry and defects of crystal structure. Chelyabinsk, YuUrGU Publ., 97 p. (In Russ.)
64. Pal’gova A.Y. (2015) Review of the world reserves of magnesia raw materials. Molodoi Uchenyi, 3(83), 193-196. (In Russ.)
65. Pinevich A.V. (2005) Microbiology of iron and manganese. St.Petersburg, St.Petersburg University Publ., 374 p. (In Russ.)
66. Pokrovsky O.S., Schott J. (1999) Processes at the Magnesium-Bearing Carbonates/Solution Interface. II. Kinetics and Mechanism of Magnesite Dissolution. Geochim. Cosmochim. Acta, 63(6), 881-897. https://doi.org/10.1016/S0016-7037(99)00013-7
67. Power I.M., Harrison A.L., Dipple G.M., Shaun S.W., Barker L.L., Fallon S.J. (2019). Magnesite formation in playa environments near Atlin, British Columbia, Canada. Geochim. Cosmochim. Acta, 255, 1-24. https://doi.org/10.1016/j.gca.2019.04.008
68. Power I.M., Kenward P.A., Dipple G.M., Raudsepp M. (2017) Room Temperature Magnesite Precipitation. Cryst. Growth Des., 17(11), 5652-5659. https://doi.org/10.1021/acs.cgd.7b003
69. Power I., Wilson S., Thom J., Dipple G., Gabites J., Southam G. (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO(2) sequestration. Chem. Geol., 260(3-4), 286-300. https://doi.org/10.1016/j.chemgeo.2009.01.012
70. Power I.M., Wilson S., Thom J.M., Dipple G.M., Southam G. (2007) Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem. Trans., 8(1), 13. https://doi.org/10.1186/1467-4866-8-13. PMID: 18053262; PMCID: PMC2213640
71. Renaut R.W. (1993) Morphology, distribution, and preservation potential of microbial mats in the hydromagnesite-magnesite playas of the Cariboo Plateau, British-Columbia, Canada. Hydrobiologia, 267, 75-98. https://doi.org/10.1007/BF00018792
72. Renaut R.W., Long P.R. (1989) Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada. Sediment. Geol., 64(4), 239-264. https://doi.org/10.1016/0037-0738(89)90051-1
73. Rozanov A.Y. (2002) Fossil bacteria, sedimentation and oreogenesis. Bacterial Paleontology. Moscow, PIN RAN Publ., 107-114. (In Russ.)
74. Rozanov A.Y., Astaf’eva M.M., Zaitseva L.V., Alfimova N.A., Felitsyn S.B. (2016) Cyanobacteria (?) in ferruginous quartzites of the Kursk Magnetic Anomaly. Dokl. Earth Sci., 470(3), 1-3. (In Russ.)
75. Rozanov A.Y., Zhegallo E.A. (1989) To the problem of genesis of ancient phosphorites of Asia. Litol. Polez. Iskop., (3), 67-82. (In Russ.)
76. Saldi G.D., Jordan G., Schott J., Oelkers E.H. (2009) Magnesite growth rates as a function of temperature and saturation state. Geochim. Cosmochim. Acta, 73(19), 5646-5657. https://doi.org/10.1016/j.gca.2009.06.035
77. Samoilov Y.V. (1921) Agronomic ores. Moscow, Gosizdat Publ., 23 p. (In Russ.)
78. Samoilov Y.V. (1921) Bioliths as an instrument of comprehension of life of former geologic epochs. Priroda, (1-3), 25-44. (In Russ.)
79. Samoilov Y.V. (1929) Bioliths. Posthumous collection of articles. Leningrad, Nauchkhimtekhizdat Publ., 140 p. (In Russ.)
80. Santos H. (2023) Mechanisms of Mg carbonates precipitation and implications for CO2 capture and utilization/ storage. University of Oulu, Fibre and Particle Engineering Research Unit. https://doi.org/10.23729/75e78ff4-9f77-4d7a-93e2-983ccb7e1bfd
81. Sanz-Montero M.E., Cabestrero Ó., Sánchez-Román M. (2019) Microbial Mg-rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain). Front Microbiol., 7(10), 148. https://doi.org/10.3389/fmicb.2019.00148. PMID: 30800103; PMCID: PMC6376964
82. Sanz-Montero M., Rodríguez-Aranda J. (2012) Magnesite formation by microbial activity: Evidence from a Miocene hypersaline lake. Sediment. Geol., 263-264, 6-15. https://doi.org/10.1016/j.sedgeo.2011.08.004
83. Sayles F.L., Fyfe W.S. (1973) The Crystallization of Magnesite from Aqueous Solution. Geochim. Cosmochim. Acta, 37(1), 87-99. https://doi.org/10.1016/0016-7037(73)90246-9
84. Scherbakova T.A. (2018) Magnesite formation in Cenozoic sedimentary complexes. Doct. geol. and min. sci. diss. Kazan, KFU Publ., 266 p. (In Russ.)
85. Shatrov V.A. (2007) Lanthanides as indicators of sedimentation settings (based on the analysis of reference sections of the Proterozoic and Phanerozoic of the East European Platform). Doct. geol. and min. sci. diss. Moscow, VSU Publ., 36 p. (In Russ.)
86. Shatrov V.A., Voitsekhovsky G.V. (2013) Lanthanides and highly mobile elements in sedimentary and meta-sedimentary formations as indicators of basement tectonic activity in platform conditions. Geochemistry, (3), 245-255.
87. Shirokova L.S., Mavromatis V., Bundeleva I.A. et al. (2013) Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes. Aquat. Geochem., 19, 1-24. https://doi.org/10.1007/s10498-012-9174-3
88. Shkol’nik E.L., Tang Tianfu, Eganov E.A., Rozanov A.Y., Baturin G.N., Zhegallo E.A., Xue Yaosong, Yu Qunliu, Jel K., Piner D., Medrano M. (1999) The nature of phosphate grains and phosphorites of the largest basins of the world. Vladivostok, Dal’nauka Publ., 207 p. (In Russ.)
89. Shkol’nik E.L., Zhegallo E.A., Bogatyrev B.A., Bugel’-skii Y.Y., Slukin A.D., Novikov V.M., Eganov E.A., Georgievskii A.F., Zhukov V.V., Myskin V.I., Odokii B.N. (2004) Biomorphic structures in bauxites (based on the results of electron-microscopic study). Moscow, Eslan Publ., 3-13. (In Russ.)
90. Slukin A.D., Boeva N.M., Zhegallo E.A., Zaitseva L.V. (2016) Biominerals of lateritic bauxites – new data based on the results of electron microscopic study. Novye Dannye o Mineralakh, vyp. 51, 52-61. (In Russ.)
91. Slukin A.D., Bortnikov N.S., Novikov V.M., Zhegallo E.A., Boeva N.M., Shkol’nik E.L. (2013) Biominerals of lateritic weathering crusts as products of life activity of fossil organisms. Organic Mineralogy. Chernogolovka, IPFKh RAN Publ., 139-142. (In Russ.)
92. Sorokovikova E.G. (2008) Cyanobacteria from thermal springs of the Baikal rift zone and their role in silica deposition as model objects for the study of microfossils. Cand. biol. sci. diss. Irkutsk, Limnological Institute, SB RAS, 18 p. (In Russ.)
93. Southam G., Lengke M., Fairbrother L., Reith F. (2009) The Biogeochemistry of Gold. Elements, 5(5), 303-307. https://doi.org/10.2113/gselements.5.5.303
94. Starostin V.I., Sakia D.R. (2015) Evolution of views on the origin of the Witwatersrand gold deposit. Vestn. Moskovskogo Universiteta. Ser. 4. Geol., (2), 32-38. (In Russ.)
95. Tikhomirova N.S., Orleanskii V.K. (1994) Modeling of phosphate deposition in laboratory cultures of cyanobacteria. Litol. Polez. Iskop., (1), 135-140. (In Russ.)
96. Toner J.D., Catling D.C. (2020) A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Nat. Acad. Sci. USA, 117(2), 883-888. https://doi.org/10.1073/pnas.1916109117
97. Toporski J.K., Steele A., Westall F., Thomas-Keprta K.L., McKay D.S. (2002) The simulated silicification of bacteria – new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology, 2(1), 1-26. https://doi.org/10.1089/153110702753621312. PMID: 12449852
98. Valdiya K.S. (1968) Origin of the magnesite deposits of southern Pithoragarh, Kumaun Himalaya, India. Econ. Geol., 63(8), 924-934. https://doi.org/10.2113/gsecongeo.63.8.924
99. Voitkevich G.V., Miroshnikov A.E., Povarennykh A.S., Prokhorov V.G. (1977) Brief reference book on geochemistry. Moscow, Nedra Publ., 184 p. (In Russ.)
100. Vandeginste V. (2021) Effect of PH Cycling and Zinc Ions on Calcium and Magnesium Carbonate Formation in Saline Fluids at Low Temperature. Minerals, 11(7), 723. https://doi.org/10.3390/MIN11070723
101. Xu J., Yan C., Zhang F., Konishi H., Xu H., Teng H.H. (2013) Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems. Proc. Nat. Acad. Sci. USA, 110(44), 17750-5. https://doi.org/10.1073/pnas.1307612110
102. Zavarzin G.A., Zhilina T.N. (2000) Soda lakes – a natural model of the ancient biosphere of the continents. Priroda, (2), 45-55. (In Russ.)
103. Zeng L.Q., Yi H.S., Xia G.Q. et al. (2019) Palaeoenvironmental setting of lacustrine stromatolites in the Miocene Wudaoliang Group, northern Tibetan Plateau. J. Palaeogeogr., 8(18), 1-15. https://doi.org/10.1186/s42501-019-0033-7
104. Zhegallo E.A., Rozanov A.Y. (2002) Tomtor rare-earth-niobium ores. Bacterial paleontology. Moscow, PIN RAN Publ., 111-115. (In Russ.)
105. Zhegallo E.A., Rozanov A.Yu., Ushatinskaya G.T. (2002) Phosphorites. Bacterial paleontology. Moscow, PIN RAN Publ., 97-102. (In Russ.)
106. Zhegallo E.A., Zaitseva L.V., Karpov G.A., Samylina O.S. (2021) Modern fossilization and geyserites of Kamchatka. Bacterial paleontology. Moscow, PIN RAN Publ., 27-37. (In Russ.)
107. Zhou H., Gao D., Huang L., Zhu G., Zhang T., Liu J., Zhai X., Xiong R., Wang S., Zhang Y. (2023) Characteristics and genesis of dolomite in the lower Cambrian Xiaoerbulake Formation of the western Tarim Basin, China. Front. Earth Sci., 10, 1075941. https://doi.org/10.3389/feart.2022.1075941
Review
For citations:
Georgievsky A.F., Zhegallo E.A., Georgievsky A.A., Bugina V.M., Kailachakov P.E., Georgievskaya K.A., Markov V.E., Karelina E.V. Magnesite microbialites of the Kunduzak occurrence in the weathering crust of the Khalilovsky ultrabasite massif (Southern Urals). LITHOSPHERE (Russia). 2025;25(4):977-1000. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-4-977-1000. EDN: RQXAIV