Microscopic traces of the Chulym bolide, fall 1984
https://doi.org/10.24930/1681-9004-2025-25-4-961-976
EDN: RTCHEE
Abstract
Research subject. The Chulymsky bolide, the fall of 1984.
Aim. Identification of diagnostic signs of cometary origin particles extracted from the “trace” of the Chulym cosmic body, analysis of data for its classification by type to a fragment of the comet nucleus.
Materials and methods. Peat columns selected at three points along the flight path of the Chulym cosmic body were studied. An optical microscope “Olympus BX 51M” and a scanning electron microscope “Tescan Vega II” with a prefix for energy-dispersive quantitative microanalysis “Drycool” were used.
Results. The cometary nature of Chulym cosmic body was accepted by the authors as a working hypothesis, according to which a ground–based search was conducted for “traces” of an exploding bolide – a fragment of a comet – in the form of microscopic cosmic particles. The authors consider the version of a thermal explosion of Chulym cosmic body during braking in dense layers of the atmosphere to be the most probable. An initiative expedition was conducted to collect samples containing suspected “traces” of cometary matter. The particles extracted from the samples taken at three points of the Chulym cosmic body trace near Minayevka were studied. The authors attributed some of the detected particles to the substance of the bolide destroyed by the explosion, based on the working hypothesis that the Chulym cosmic body is a fragment of a comet.
Conclusions. The particles found in samples from three sampling points differ in microstructure, which may reflect the interaction of cosmogenic matter with terrestrial matter at different stages of the bolide's flight. Among the particles isolated from the “trace” of the Chulym cosmic body, iron-containing aluminosilicate microspheres with a unique finefiber microstructure turning into nanostructural features that have not been observed previously in particles of volcanic or technogenic origin were identified. Such microspheres can be used as a stratigraphic reference for an impact event, including as a diagnostic feature of cometary matter and its transformation products. Micro- and nanostructures arising during the explosion may have fundamentally new properties and be of interest for the development of materials with new properties, which is important for work in the field of nanotechnology. The detection of thin films of Fe and Ni on particles of terrestrial origin can be used as a diagnostic feature of cometary material in cases of meteoroid explosion with destruction in the atmosphere or on the surface.
Keywords
About the Authors
V. A. TselmovichRussian Federation
Vladimir A. Tselmovich
Borok village, Yaroslavl region 152742
V. G. Shelmin
Russian Federation
Vasiliy G. Shelmin
3/7Mir st., Kislovka village, Tomsk, Tomsk region 634050
L. P. Maxe
Belarus
Larisa P. Maxe
17 Gabrovskaya st., Mogilev 212029
References
1. Alekseev A.O., Alekseeva T.V., Afanas’eva A.N., Guver R.B., Kapralov M.I., Rivkina E.M., Ryumin A.K., Samylina O.S., Simakov M.B., Snytnikov V.N., Frontas’eva M.V., Tsel’movich V.A., Saprykin E.A., Rozanov A.Yu. (2024) Astrobiology. Dubna, Joint Institute for Nuclear Research, 199 p. (In Russ.)
2. Antipov S.N., Schepers L.P.T., Vasiliev M.M., Petrov O.F. (2016) Dynamic Behavior of Polydisperse Dust System in Cryogenic Gas Discharge Complex Plasmas. Contrib. Plasma Phys., 56(3-4), 296-301. (In Russ.)
3. Blum J., Gundlach B., Krause M., Fulle M., Johansen A., Agarwal J., von Borstel I., Shi X., Hu X., Bentley M.S., Capaccioni F., Colangeli L., Corte V.D., Fougere N., Green S.F., Ivanovski S., Mannel T., Merouane S., Migliorini A., Rotundi A., Schmied R., Snodgrass C. (2017) Evidence for the formation of comet 67P/Churyumov– Gerasimenko through gravitational collapse of a bound clump of pebbles. Mon. Not. Royal Astronom. Soc., 469(2), 755-773.
4. Brownlee D.E. (1985) Cosmic Dust: Collection and Research. Annu. Rev. Earth Planet. Sci., (13), 147-173.
5. Brownlee D.E. (2016) Cosmic Dust: Building Blocks of Planets Falling from the Sky. Elements, 12(3), 165-170.
6. Dorofeeva V.A. (2020) Chemical and Isotopic Composition of Comet 67P/Churyumov–Gerasimenko (Review of the Results of the RosettaPhilae Space Mission). Implications for Cosmogony and Cosmochemistry. Astronom. Vestnik. Issledovanie Solnechnoi Sistemy, 54(2), 110-134. (In Russ.)
7. Drolshagen S., Kretschmer J., Poppe B. (2017) Mass accumulation of earth from interplanetary dust, meteoroids, asteroids and comets. Planet. Space Sci., 143, 21-27.
8. Guilbert-Lepoutre A., Rosenberg E., Prialnik D., Besse S. (2016) Modelling the evolution of a comet subsurface: implications for 67P/Churyumov–Gerasimenko. Mon. Not. Royal Astronom. Soc., 462(Suppl. 1), 146-155.
9. Guzik P., Drahus M. (2021) Gaseous atomic nickel in the coma of interstellar comet 2I/Borisov. Nature, 593, 375-378. https://doi.org/10.1038/s41586-021-03485-4
10. Heck P.R., Greer J., Kööp L., Trappitsch R., Gyngard F., Busemann H., Maden C., Ávila J.N., Davis A.M., Wieler R. (2020) Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide. Proc. Nat. Acad. Sci. U.S.A, 117(4), 1884-1889.
11. Ivochkin Yu.P., Borodina T.I., Kazakov A.N., Teplyakov I.O. (2020) Experimental and Computational Study of the Possibility of Obtaining Amorphous Alloys by Explosive Fragmentation of Hot Droplets in a Low-Boiling Coolant. Teplovye Protsessy v Tekhnike, 12(3), 136-142. (In Russ.)
12. Khankhasaeva S.Ts., Bryzgalova L.V., Dashinamzhilo va E.Ts. (2003) Fe-pillar clays in wastewater treatment processes from organic dyes. Ekologiya i Promyshlennost’ Rossii, (12), 37-39. (In Russ.)
13. Kirillova S.A., Al’myashev V.I. (2012) Formation of complex nanostructures based on the FeOx–SiO2–TiO2 system. Nanosystemy: Fizika, Khimiya, Matematika, 3(6), 98-104. (In Russ.)
14. Korobeinikov V.P., Chushkit P.I., Shurshalov L.V. (1990) Tunguska phenomenon: gas-dynamic regulation. Traces of cosmic impacts on the Earth. Novosibirsk, Nauka. Sibirskoe otd. Publ., 59-79. (In Russ.)
15. Levasseur-Regourd A.-Ch., Agarwal J., Cottin H., Engrand C., Flynn G., Marco F., Tamas G., Yves L., Jérémie L., Thurid M., Sihane M., Poch O., Thomas N., Westphal A. (2018) Cometary Dust. Space. Sci. Rev., 214(64). https://doi.org/10.1007/s11214-018-0496-3
16. Manfroid J., Hutsemékers D., Jehin E. (2021) Iron and nickel atoms in cometary atmospheres even far from the Sun. Nature, 593, 372-374.
17. Marshintsev V.K. (1990) The nature of spheroid formations in kimberlites. Traces of cosmic impacts on the Earth. Novosibirsk, Nauka. Sibirskoe otd. Publ., 45-48. (In Russ.)
18. Miller J.A., Opher M., Hatzaki M., Papachristopoulou K., Thomas B.C. (2024) Earth’s mesosphere during possible encounters with massive interstellar clouds 2 and 7 million years ago. Geophys. Res. Lett., 51(17), 1-9. https://doi.org/10.1029/2024GL110174
19. Mintova S., Jaber M., Valtchev V. (2015) Nanosized microporous crystals: emerging applications. Chem. Soc. Rev., 44, 7207.
20. Napier W.M., Wickramasinghe J.T., Wickramasinghe N.C. (2007) The origin of life in comets. Int. J. Astrobiol., 6(4), 321-323.
21. Pecherskii D.M., Kandinov M.N., Markov G.P., Plyashkevich A.A., Tsel’movich V.A. (2012) Combination of thermomagnetic and microprobe studies of extraterrestrial magnetic minerals: information on the structure and evolution of planets. Researched in Russia, 437-452. (In Russ.)
22. Pecherskii D.M., Kuzina D.M., Markov G.P., Tsel’movich V.A. (2017) Native iron on Earth and in space. Fizika Zemli, (5), 44-62. (In Russ.)
23. Pecherskii D.M., Markov G.P., Tsel’movich V.A. (2015) Pure iron and other magnetic minerals in meteorites. Astronom. Vestnik. Issledovanie Solnechnoi Sistemy, 49(1), 65-75. (In Russ.)
24. Shmidt O.Yu. (1949) Four Lectures on the Theory of the Earth’s Origin. USSR Academy of Sciences, Geophys. Inst. Moscow; Leningrad, Publishing House of the USSR Academy of Sciences, 72 p. (In Russ.)
25. Simonia Ir. (2011) Organic component of cometary ice. Astrophys. Space Sci., 332, 91-98.
26. Smirnova E.M., Evdokimenko N.D., Reshetina M.V., Demikhova N.R., Kustov A.L., Dunaev S.F., Vinokurova V.A., Glotova A.P. (2023) Fe- and Cu-Zn-containing catalysts based on natural aluminosilicate nanotubes and H-ZSM-5 zeolite in carbon dioxide hydrogenation. Rоs. Zhurnal Fizicheskoi Khimii, 97(5), 952-959. (In Russ.)
27. Tomkins A.G., Bowlt L., Genge M.J., Wilson S.A., Brand H.E., Wykes J.L. (2016) Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere. Nature, 533, 235-238.
28. Tosheva L., Brockbank A., Mihailova B., Sutula J., Ludwig J., Potgiete H., Verran J. (2012) Micron and nanosized FAU-type zeolites from fly ash for antibacterial applications. J. Mater. Chem., 22(33), 16897-16905.
29. Tsel’movich V.A. (2012a) Native metals and space minerals from the Tsenkher astrobleme. Minerals: structure, properties, research methods. Proc. of the 4th All-Russian Youth Sci. Conf. Ekaterinburg, Institute of Geology and Geochemistry, UB RAS, 257-259. (In Russ.)
30. Tsel’movich V.A. (2012b) Particles of native metals as possible indicators of the substance of the Tunguska meteorite. In the collection The Tunguska Phenomenon: at the crossroads of ideas. The second century of studying the Tunguska Event of 1908. Collection of scientific papers. Novosibirsk, 105-107. (In Russ.)
31. Tsel’movich V.A. (2023) Microscopic Traces of Comets That Fell to Earth. Physicochemical and Petrophysical Research in Earth Sciences. Proc. of the 24th Int. Conf. Moscow, IGEM RAN Publ., 302-305. (In Russ.)
32. Tsel’movich V.A., Kurazhkovskii A.Yu., Kazanskii A.Yu., Shchetnikov A.A., Blyakharchuk T.A., Filippov D.A. (2019) Study of the dynamics of cosmic dust input to the earth’s surface through peat deposits. Fizika Zemli, (3), 150-160. (In Russ.)
33. Tsel’movich V.A., Lyukhin A.M., Sheremet V.A. (2018) Traces of the impact process on minerals from the Carolina Bays craters (East coast of the USA). Tr. Vseros. annual seminar on experimental mineralogy, petrology and geochemistry. Moscow, GEOKhI RAN Publ., 373-376.
34. Tsel’movich V.A., Makse L.P. (2022) Magnetic microspheres of anthropogenic and cosmogenic origin and their similarity. Physicochemical and Petrophysical Research in Earth Sciences. Proc. of the 23rd Int. Conf. Moscow, IGEM RAN Publ., 292-295. (In Russ.)
35. Tsel’movich V.A., Shel’min V.G. (2023) Meteorite, Blast Furnace or Natural Fire? Proceedings of the All-Russian Annual Seminar on Experimental Mineralogy, Petrology and Geochemistry. Moscow, GEOKhI RAN Publ., 352-356. (In Russ.)
36. Tsel’movich V.A., Shel’min V.G., Makse L.P. (2023) In Search of Traces of the Chulym Bolide. Physicochemical and Petrophysical Research in Earth Sciences. Proc. of the 24th Int. Conf. Moscow, IGEM RAN Publ., 306-310. (In Russ.)
37. Tsel’movich V.A., Shelmin V.G., Makse L.P., Kurazhkovskii A.Yu. (2024) Microscopic Traces of the Chulym Bolide (Fall of 1984, Point 1, Minaevka). Proc. of the All-Russian Annual Seminar on Experimental Mineralogy, Petrology and Geochemistry. Moscow, GEOKhI RAN Publ., 288-293. (In Russ.)
38. Tselmovich V.A., Amelin I.I., Gusiakov V.K., Kirillov V.E., Kurazhkovskiy A.Y. (2023) On the Possible Cometary Nature of the Uchur Cosmic Body (Fall 3.08. 1993). Adv. Geol. Geotech. Engin. Res., 05(03), 16-24.
39. Tsygankov O.S., Grebennikova T.V., Deshevaya E.A., Lapshin V.B., Morozova M.A., Novikova N.D., Polikarpov N.A., Syroeshkin A.V., Shubralova E.V., Shuvalov V.A. (2015) Studies of finely dispersed environment on the external surface of the International Space Station in the “Test” experiment: viable microbiological objects were discovered. Kosmicheskaya Tekhnika i Tekhnologiya, (1), 31-42. (In Russ.)
40. Voitsekhovskii A.I. (1990) The Culprit of Earth’s Troubles? Question Mark. 48 p. (In Russ.)
41. Walton C.R., Rigley J.K., Lipp A. et al. (2024) Cosmic dust fertilization of glacial prebiotic chemistry on early Earth. Nat. Astron., 8, 556-566. https://doi.org/10.1038/s41550-024-02212-z
42. Weissman P., Morbidelli A., Davidsson B., Blum J. (2020) Origin and Evolution of Cometary Nuclei. Space Sci. Rev., 216, 6. https://doi.org/10.1007/s11214-019-0625-7
43. Zieba S., Zwintz K., Kenworthy M.A., Kennedy G.M. (2019) Transiting exocomets detected in broadband light by TESS in the β Pictoris system. Astron. Astrophys., 2(4), 1-8. https://doi.org/10.1051/0004-6361/201935552
44. Zolensky M.E., Krot A.N., Benedix G. (2008) Record of low-temperature alteration in asteroids. Oxygen in the Solar System, MSA. Rev. Mineral. Geochem., 68, 429-462.
Review
For citations:
Tselmovich V.A., Shelmin V.G., Maxe L.P. Microscopic traces of the Chulym bolide, fall 1984. LITHOSPHERE (Russia). 2025;25(4):961-976. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-4-961-976. EDN: RTCHEE