Geochemistry and age of detrital zircon from the Quaternary deposits from the Ufaley block (Middle Urals): provenance and the problem of Precambrian
https://doi.org/10.24930/1681-9004-2025-25-4-819-847
EDN: TXPUTT
Abstract
Research subject. Detrital zircons from the Quaternary deposits from the frame of pyroxenite composing the Shigirsky hills in the western part of the Ufaley block.
Aim. The verification of the Pre-Cambrian dating, evaluation of the substrate type and geotectonic settings of rocks enclosing ultramafites of the Ufaley block.
Materials and methods. U-Pb isotope dating and determination of rare and rare-earth elements in detrital zircon by laser ablation, RSMA investigation of minerals, establishing of zircon nature and provenance and the distance of zircon migration.
Results. Dominant Paleoproterozoic (2100–2000 Ma) maximum for the distribution of detrital zircon age accompanied by lower picks of the Archean and Neoproterozoic-Lower Ordovician age has been established. Detrital zircon was derived from continental-type sources corresponding to igneous and metamorphic rocks of basic, intermediate and acidic composition. The transfer distance was negligible.
Conclusions. Zircon morphology, its internal structure, mineral inclusions, geochemistry and age allow to suggests the similar protolith and joint the Precambrian evolution at least the western part of the Ufaley block and Taratash and Alexandrovsky blocks, which are the fragments of crystalline complexes of the Archean Volga-Uraliya craton. This conclusion supports additionally by similarity in composition of high-Ca mafic-ultramafic rocks known in these blocks.
Keywords
About the Authors
G. Y. ShardakovaRussian Federation
Galina Y. Shardakova
15 Academician Vonsovsky st., Ekaterinburg 620110
E. V. Pushkarev
Russian Federation
Evgenii V. Pushkarev
15 Academician Vonsovsky st., Ekaterinburg 620110
A. O. Simankova
Russian Federation
Aleksandra O. Simankova
15 Academician Vonsovsky st., Ekaterinburg 620110
V. S. Chervyakovsky
Russian Federation
Vasiliy S. Chervyakovsky
15 Academician Vonsovsky st., Ekaterinburg 620110
M. V. Chervyakovskaya
Russian Federation
Maria V. Chervyakovskaya
15 Academician Vonsovsky st., Ekaterinburg 620110
References
1. Andersen T. (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem. Geol., 216(3-4), 249-270. https://doi.org/10.1016/j.chemgeo.2004.11.013
2. Aranovich L.Ya., Bortnikov N.S., Borisov A.A. (2020) Oceanic Zircon as a Petrogenetic Indicator. Russ. Geol. Geophys., 61(5-6), 559-570 (translated from Geol. Geofiz., 63(4), 522-549). https://doi.org/10.15372/RGG2019187
3. Arzamastsev A.A., Arzamastseva L.V., Shamatrina A.M., Travin A.V., Belyatsky B.V., Antonov A.V., Larionov A.N., Rodionov N.V., Sergeev S.A. (2007) Duration of formation of magmatic system of polyphase paleozoic alkaline complexes of the Central Kola: U-Pb, Rb-Sr, Ar-Ar data. Dokl. Earth Sci., 413(3), 432-436. https://doi.org/10.1134/S1028334X07030257
4. Balashov Y.A., Skublov S.G. (2011) Contrasting geochemistry of magmatic and secondary zircons. Geochem. Int., 49(6), 594-604. https://doi.org/10.1134/S0016702911040033
5. Belkovskii A.I. (1987) Biotites and vermiculites of the Ufaley gneiss-migmatite complex (Middle Urals). Sverdlovsk, UrO RAN Publ., 59 p. (In Russ.)
6. Belkovskii A.I. (2011) Geology and mineralogy of quartz veins of the Kyshtym deposit (Middle Urals). Miass, IMIN UrO RAN Publ., 234 p. (In Russ.)
7. Belkovskii A.I. (1989) Symplectite eclogites of the Middle Urals. Sverdlovsk, IGG UNTs AN SSSR, 190 p. (In Russ.)
8. Belkovskii A.I., Shardakova G.Yu., Kholodnov V.V., Udachin V.N., Konovalova E.V. (2018) New data on mineralogy and petrogeochemistry of alkaline rocks of the Kozlinogorsk complex. Vestn. Permskogo Universiteta. Geol., 17(4), 308-325. (In Russ.) https://doi.org/10.17072/psu.geol.17.4.308
9. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143, 602-622. https://doi.org/10.1007/s00410-002-0364-7
10. Bibikova E.V., Kirnozova T.I., Fugzan M.M., Bogdanova S.V., Postnikov A.V., Popova L.P., Glushchenko V.V. (2009) Sarmatia-Volgo-Uralia junction zone: isotopicgeochronologic characteristic of supracrustal rocks and granitoids. Stratigr. Geol. Correl., 17(6), 561-573. http://dx.doi.org/10.1134/S086959380906001X
11. Chervyakovskaya M.V., Chervyakovskii V.S., Votyakov S.L. (2023) LA-ISP-MS determination of the trace and U-Pb isotopic composition of zircon: methodological aspects of the analysis “from one crater”. Minerals: structure, properties, research methods. XIII All-Russian Youth Scientific Conference. Ekaterinburg, IGG UrO RAN, 300-302. (In Russ.)
12. Cohen K.M., Finney S.C., Gibbard P.L., Fan J.-X. (2013) The ICS International Chronostratigraphic Chart. Episodes, 36, 199-204. http://dx.doi.org/10.18814/epiiugs/2013/v36i3/002
13. Echtler H.P., Ivanov K.S., Ronkin Y.L., Karsten L.A., Hetzel R., Noskov A.G. (1997) The tectono-metamorphic evolution of gneiss complexes in the Middle Urals, Russia: a reapprisal. Tectonophysics, 276(1-4), 229-251.
14. Ferry J.M., Watson E.B. (2007) New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contrib. Mineral. Petrol., 154, 429-437. https://doi.org/10.1007/s00410-007-0201-0
15. Fershtater G.B. (2013) Paleozoic intrusive magmatism of the Middle and Southern Urals. Ekaterinburg, RIO UrO RAN Publ., 368 p. (In Russ.)
16. Ferstater G.B., Krasnobaev A.A., Bea F., Montero P. (2012) Geochemistry of zircon from igneous and metamorphic rocks of the Urals. Lithosphere (Russia), (4), 13-29. (In Russ.)
17. Fu B., Mernagh T.P., Kita N.T., Kemp A.I.S., Valley J.W. (2009) Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chem. Geol., 259, 131-142. https://doi.org/10.1016/j.chemgeo.2008.10.035
18. Grebennikov A.V., Khanchuk A.I. (2021) Geodynamics and magmatism of the Pacific type transform margins: basic theoretical aspects and discriminant diagrams. Tikhookean. Geol., 40(1), 3-24. (In Russ.) https://doi.org/10.30911/0207-4028-2021-40-1-3-24
19. Grigor’ev N.A. (2009) Distribution of chemical elements in the upper part of the continental crust. Ekaterinburg, IGG UrO RAN Publ., 381 p. (In Russ.)
20. Grigor’ev N.A. (2005) Zircon as a carrier of zirconium and hafnium in the upper part of the continental crust. Lithosphere (Russia), (1), 143-149. (In Russ.)
21. Grimes C.B., Wooden J.L., Cheadle M.J., John B.E. (2015) “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Mineral. Petrol., 170(5-6), аrticle 46. https://doi.org/10.1007/s00410-015-1199-3
22. Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J. (2007) Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35, 643-646. https://doi.org/10.1130/G23603A
23. Harley S.L., Kelly N.M. (2007) Zircon tiny but timely. Elements, 3(1), 13-18.
24. Harrison T.M., Schmitt A.K. (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet. Sci. Lett., 261, 9-19. https://doi.org/10.1016/j.epsl.2007.05.016
25. Hetzel R., Glodny J. (2002) A crustal-scale, orogen-parallel strike-slip foult in the Middle Urals: age, magnitute of displacement, and geodynemic significance. Int. J. Earth Sci. (Geol. Rundsch.), 91, 231-245.
26. Hetzel R., Romer R.L. (1999) U–Pb dating of the Verkniy Ufaley intrusion, middle Urals, Russia: a minimum age for subduction and amphibolite facies overprint of the East European continental margin. Geol. Mag., 136(5), 593-597.
27. Hoskin P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta, 69(3), 637-648.
28. Hoskin P.W.O., Ireland T.R. (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28, 627-630. https://doi.org/10.1130/0091-7613%282000%2928%3C627%3AREECOZ%3E2.0.CO%3B2
29. Hoskin P.W.O., Schaltegger U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Zircon. Rev. Mineral. Geochem., 53, 7-62. http://dx.doi.org/10.2113/0530027
30. Hu Z.L., Wang X.W., Qin Z.P., Zhang J., Gao Y., Peng H. (2012) Basic Characteristics of Zircon Trace Elements and Their Genetic Significances in Jiama Copper Polymetallic Deposit. Nonferrous Metals (Min. Sect.), 64, 58-63.
31. Hu P., Zhai Q., Cawood P.A., Weinberg R.F., Zhao G., Zhou R., Tang Y., Liua Y. (2024) Detrital zircon REE and tectonic settings. Lithos, 480-481, 107661. https://doi.org/10.1016/j.lithos.2024.107661
32. Kaczmarek M.A., Müntener O., Rubatto D. (2008) Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps). Contrib. Mineral. Petrol., 155(3), 295-312. https://doi.org/10.1007/s00410-007-0243-3
33. Kaulina T.V. (2010) Formation and transformation of zircon in polymetamorphic complexes. Apatity, 144 p. (In Russ.)
34. Keilman G.A. (1974) Migmatite complexes of mobile belts. Moscow, Nedra Publ., 196 p. (In Russ.)
35. Kholodnov V.V., Shardakova G.Yu., Fershtater G.B., Shagalov E.S. (2018) The Riphean Magmatism Preceding the Opening of Uralian Paleoocean: Geochemistry, Isotopes, Age, and Geodynamic Implications. Geodynam. Tectonophys., 9(2), 365-389. http://dx.doi.org/10.5800/GT-2018-9-2-0351
36. Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B. (2015) Zircon Th/U ratios in magmatic environs. Lithos, 212-215, 397-414. https://doi.org/10.1016/j.lithos.2014.11.021
37. Koroteev V.A., Ogorodnikov V.N., Ronkin Yu.L., Sazonov V.N., Polenov Yu.A. (2009) Polychronity and Polygeneity of Pegmamtites of Gneissic-Amphibolitic Complexes as a Result of Continuous-Discontinuous Development of Suture Zones: Example of the Ufalei Metamorphic Block in the Middle Urals. Dokl. Earth Sci., 429(2), 1443-1446. (In Russ.)
38. Kostitsyn Y.A., Belousova E.A., Silant’ev S.A., Bortnikov N.S., Anosova M.O. (2015) Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks. Geochem. Int., 53(9), 759-785. https://doi.org/10.1134/S0016702915090025
39. Kozhevnikov V.N., Medvedev P.V., Skublov S.G., Marin Y.B., Systra Y., Valencia V. (2010) Hadean-Archean Detrital Zircons from Jatulian Quartzites and Conglomerates of the Karelian Craton. Dokl. Earth Sci., 431(1), 318-323.
40. Kozhevnikov V.N., Zemskov V.A. (2014) Hydrothermal zircons from ore amphibolites of the Travyanaya Guba massif, North Karelia. Trudy Karel’skogo Nauchnogo Tsentra RAN, (1), 76-89. (In Russ.)
41. Krasnobaev A.A. (1986) Zircon as an indicator of geological processes. Moscow, Nauka Publ., 145 p. (In Russ.)
42. Krasnobaev A.A., Cherednichenko N.V. (2005) Zircon Archaea of the Urals. Dokl. Earth Sci., 400(4), 510-514.
43. Krasnobaev A.A., Necheukhin V.M., Sokolov V.B. (1998) Zircon geochronology and the problem of terranes of the Ural accretionary-folded system. Ural. mineralog. sb. Miass, UB RAS, (8), 196-206. (In Russ.)
44. Krasnobaev A.A., Puchkov V.N., Busharina S.V., Kozlov V.I., Presnyakov S.L. (2011) Zirconology of izrandites (Southern Urals). Dokl. Earth Sci., 439(3), 394-398.
45. Krasnobaev A.A., Pushkarev E.V., Busharina S.V., Gottman I.A. (2013) Zirconology of Clinopyroxenite oh the Shigir Mountains (Ufaley Complex, Southern Urals). Dokl. Earth Sci., 450(2), 647-651. https://doi.org/10.7868/S0869565213170192
46. Krasnobaev A.A., Rusin A.I., Busharina S.V., Cherednichenko N.V., Davydov V.A. (2010) Composition, zircons and zircon geochronology of the Ufaley complex metamorphites. Tr. IGG UrO RAN, vyp. 157, 273-279. (In Russ.)
47. Kuznetsov N.B., Belousova E.A., Romanyuk T.V., Degtyarev K.E., Maslov A.V., Gorozhanin V.M., Gorozhanina E.N., Pyzhova E.S. (2017) The first results of U/Pb dating detrital zircons from sandstones of zigalga Formation (Middle Riphean, the South Urals. Dokl. Earth Sci., 475(2), 863-867. https://doi.org/10.1134/S1028334X17080-244
48. Kuznetsov N.B., Seregina E.S., Maslov A.V., Krupenin M.T., Belousova E.A., Romanyuk T.V., Gorozhanin V.M., Gorozhanina E.N., Tsel’movich V.A. (2013) The First U-Pb (LA-ICP-MS) Isotope Data of Detrital Zircons from the Basal Levels of the Riphean Stratotype. Dokl. Earth Sci., 451(1), 724-728. https://doi.org/10.7868/S0869565213210226
49. Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Gertseva M.V. (2005) Preordovician granitoids of the Timan-Ural region and the evolution of Proto-Uralids-timanids. Syktyvkar, Geoprint Publ., 100 p. (In Russ.)
50. Li H., Watanabe K., Yonezu K. (2014) Zircon Morphology, Geochronology and Trace Element Geochemistry of the Granites from the Huangshaping Polymetallic Deposit, South China: Implications for the Magmatic Evolution and Mineralization Processes. Ore Geol. Rev., 60, 14-35. https://doi.org/10.1016/j.oregeorev.2013.12.009
51. Linnemann U., Ouzegane K., Drareni A., Hofmann M., Becker S., Gärtner A., Sagawe A. (2011) Sands of West Gondwana: an archive of secular magmatism and plate interactions – a case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U–Pb-LA-ICP-MS detrital zircon ages. Lithos, 123(1-4), 188-203. http://dx.doi.org/10.1016/j.lithos.2011.01.010
52. Maslov A.V. (2004) Riphean and Vendian sedimentary sequences of the Timanides and Uralides, the eastern periphery of the East European Craton. The Neoproterozoic Timanide orogen of Eastern Baltica. Geol. Soc., Lond., Memoirs, 30, 19-35. https://doi.org/10.1144/GSL.MEM.2004.030.01.03
53. Maslov A.V., Ronkin Yu.L., Krupenin M.T., Lepikhina O.P., Gareev E.Z. (2004) The Lower Riphean Fine-Grained Aluminosilicate Clastic Rocks of the Bashkir Anticlinorium in the Southern Urals: Composition and Evolution of Their Provenance. Geochem. Int., 42(6), 561-578.
54. Mineev D.A. (1959) Rare-earth epidote from pegmatites of the Middle Urals. Dokl. AN SSSR, 127(4), 865-868. (In Russ.)
55. Necheukhin V.M., Krasnobaev A.A., Sokolov V.B. (2000) Geochronology and structural position of the Lower Precambrian in the Ural accretion-folded framing of the Russian Plate. General questions of the division of the Precambrian. Apatity, 201-203. (In Russ.)
56. Nedosekova I.L., Ogorodnikov V.N., Polenov Yu.A., Savichev A.N. (2016) Granite pegmatites, carbonatites and hydrothermalites of the Ufa metamorphic complex. Ekaterinburg, IGG UrO RAN, 283 p. (In Russ.)
57. Nosova A.A., Kargin A.V., Larionova Yu.O., Sazonova L.V., Gorozhanin V.M., Kovalev S.G. (2012) Mesoproterozoic within-plate province of the Western Urals: main petrogenetic rock types and their origin. Petrology, 20(4), 356-390. https://doi.org/10.1134/S086959111204008X
58. Ogorodnikov V.N., Polenov Yu.A., Nedosekova I.L., Savichev A.N. (2016) Granite pegmatites, carbonatites, and hydrothermalites of the Ufa metamorphic complex. Ekaterinburg, IGG UrO RAN; UGGU Publ., 273 p. (In Russ.)
59. Ovchinnikov L.N., Dunaev V.A., Krasnobaev A.A. (1964) Materials on the absolute geochronology of the Urals. The absolute age of geological formations. Moscow, Nauka Publ., 157-171.
60. Pearce J.A. (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1), 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
61. Pearce J.A., Ernst R.E., Peate D.W., Rogers C. (2021) LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos, 392-393, 106068. https://doi.org/10.1016/j.lithos.2021.106068
62. Pelleter E., Cheilletz A., Gasquet D., Mouttaqi A., Annich M., Hakour A.E., Deloule E., Feraud G. (2007) Hydrothermal zircons: A tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit – Morocco). Chem. Geol., 245, 135-161. https://doi.org/10.1016/j.chemgeo.2007.07.026
63. Petrography and petrology of igneous, metamorphic and metasomatic rocks. (2001) Moscow, Logos Publ., 768 p. (In Russ.)
64. Petrov G.A., Maslov A.V., Ronkin Yu.L. (2005) Paleozoic magmatic complexes of the Kvarkush-Kamennogorsk anticlinorium (Middle Urals): new data on geochemistry and geodynamics. Lithosphere (Russia), (4), 42-69. (In Russ.)
65. Petrov G.A., Ronkin Y.L., Maslov A.V., Gerdes A. (2015) First Results of U–Pb Dating of Detrital Zircons from Metasandstones of the Isherim Anticlinorium (Nort Urals). Dokl. Earth Sci., 464(2), 1010-1014. https://doi.org/10.7868/S086956521529023X
66. Puchkov V.N. (2010) Geology of the Urals and Cis-Urals (actual problems of stratigraphy, tectonics, geodynamics and metallogeny). Ufa, DizainPoligrafServis Publ., 280 p. (In Russ.)
67. Puchkov V.N. (2018) The plume-dependent granite-rhyolite magmatism. Lithosphere (Russia), (5), 692-705. (In Russ.) https://doi.org/10.24930/1681-9004-2018-18-5-692-705
68. Pushkarev E.V., Gottman I.A., Ryazancev A.V., Degtyarev K.E., Kamenetsky V.S. (2018) Ankaramite: a new type of high-magnesium and high-calcium primitive melt in the Magnitogorsk island-arc zone (Southern Urals). Dokl. Earth Sci., 479(2), 463-467. https://doi.org/10.7868/S0869565218100171
69. Pystin A.M., Grakova O.V., Pystina Yu.I., Kushmanova E.V., Popvasev K.S., Potapov I.L., Khubanov V.B. (2022) U-Pb (LA-SF-ICP-MS) dating and probable provenance of detrital zircons from terrigenous deposits of the Upper Precambrian of the Subpolar Urals. Lithosphere (Russia), (6), 741-760. (In Russ.) https://doi.org/10.24930/1681-9004-2022-22-6-741-760
70. Pystin A.M., Pystina Yu. I. (2015) Archean-Paleoproterozoic history of rock metamorphism in the Ural segment of the Earth’s crust. Precambrian geology. Trudy Karel’skogo Nauchnogo Tsentra RAN, (7), 3-18.
71. Pystin A.M., Pystina S.N., Lennykh V.I. (1976) Changes in the chemical and mineral composition of gabbroids during metamorphism (western slope of the Southern Urals). Alkaline, basic and ultrabasic complexes of the Urals. Sverdlovsk, UNTs AN SSSR Publ., 41-54.
72. Pystin A.M., Ronkin Yu. L., Sindern S., Pystina Yu. I. (2012) Geochronological history of rock metamorphism in the pre-Riphean formations of the western slope of the Southern Urals. Vestnik Instituta Geologii Komi NTs UrO RAN, 11(215), 2-8. (In Russ.)
73. Report on the results of work on the facility: “Work on the assessment of geological and geophysical studies and the preparation of materials on the geological justification of the GDP200 within sheet O-40-XXXVI (Nyazepetrovskaya square)”. (2020) Chelyabinsk, OOO NTPP Geopoisk, 280 p. (In Russ.)
74. Romanyuk T.V., Kuznetsov N.B., Belousova E.A., Gorozhanin V.M., Gorozhanina E.N. (2018) Paleotectonic and paleogeographic conditions for the accumulation of the Lower Riphean Ai Formation in the Bashkir Uplift (Southern Urals): the terranechrone® detrital zircon study. Geodynam. Tectonophys., 9(1), 1-37. (In Russ.) https://doi.org/10.5800/GT-2018-9-1-0335
75. Romanyuk T.V., Kuznetsov N.B., Novikova A.S., Latysheva I.V., Fedyukin I.V., Dubenskiy A.S., Erofeeva K.G., Sheshukov V.S. (2024) Magmatites of the Kastel Mountain as a Local Source of Detrital Zircons for the Demerdzhi Formation (Southern Demerdzhi Mountain), Mountainous Crimea. Geodynam. Tectonophys., 15(6), 0794. https://doi.org/10.5800/GT-2024-15-6-0794
76. Ronkin Yu.L., Maslov A.V., Lepikhina O.P., Sindern S., Kramm U., Matukov D.I. (2007) Oldest (3.5 GA) zircons of the Urals: U-PB (SHRIMP-II) and TDM constraints. Dokl. Earth Sci., 415(2), 860-865.
77. Ronkin Yu.L., Sindern S., Lepikhina O.P. (2012) Isotopic geology of the oldest formations of the Southern Urals. Lithosphere (Russia), (5), 50-76. (In Russ.)
78. Rusin A.I. (2007) Highly baric metamorphism of the Urals. Geodynamics, magmatism, metamorphism, and ore formation. Tr. IGG UrO RAN, vyp. 154, 421-460. (In Russ.)
79. Rusin A.I., Krasnobaev A.A. (1984) Ancient crust and the problem of gray gneisses in the Urals. Natural associations of gray gneisses of the Archean (geology and petrology). Leningrad, Nauka Publ., 94-104. (In Russ.)
80. Savva E.V., Belyatsky B.V., Antonov A.V. (2010) Carbonatitic zircon. Acta Mineralogica-Petrographica. Abstract series, 6, 576.
81. Schwartz T.M., Surpless K.D., Colgan J.P., Johnstone S.A., Holm-Denoma C.S. (2021) Detrital zircon record of magmatism and sediment dispersal across the North American Cordilleran arc system (28–48°N). Earth-Sci. Rev., 220, 103734. https://doi.org/10.1016/j.earscirev.2021.103734
82. Sergeeva L.Yu., Gusev N.I., Skublov S.G., Li S.-Kh., Li Ch.-L. (2020) Paleoarchean detrital zircon from quartzites of the Daldyn series (Anabar shield): geochemistry, oxygen isotope composition and age. Minerals: structure, properties, research methods. XI All-Russian Youth Sci. Conf. Ekaterinburg, 260-261. (In Russ.)
83. Shardakova G.Y. (2016a) Geochemistry and Isotopic Ages of Granitoids og the Bashkirian Mega-Anticlinorium: Evidence for Several Pulses of Tectono–Magmatic Activity at the Junction Zone between the Uralian Orogen and East European Platform. Geochem. Int., 54(7), 594-608. https://doi.org/10.7868/S0016752516070098
84. Shardakova G.Yu. (2016b) Granitoids of the Ufaley Block: Geodynamic environments, age, sources, problems. Lithosphere (Russia), (4), 133-137. (In Russ.)
85. Shardakova G.Yu., Belkovskii A.I., Leonova L.V. (2022) Accessory mineralization of Precambrian amphibolites and associated acid rocks of the Kozlinogorsk rare metal occurrence (Ufaley block, Middle Urals). Modern trends in the development of geochemistry. Conf. materials. Irkutsk, IGSO RAN Publ., 229-233. (In Russ.)
86. Shardakova G.Y., Chervyakovskaya M.V. (2020) VendianCambrian granitoids of the Ufaley block (Middle Urals): new isotopic data, substrate composition, potential ore content. Izv. UGGU, 58(2), 48-63. (In Russ.) https://doi.org/10.21440/2307-2091-2020-2-48-63
87. Shardakova G.Yu., Pribavkin S.V., Krasnobaev A.A., Borodina N.S., Chervyakovskaya M.V. (2021) Zircons from rocks ofthe Murzinka-Adui metamorphic complex: geochemistry, thermometry, polychronism, and genetic consequences. Geodynam. Tectonophys., 12(2), 332-349. (In Russ.) https://doi.org/10.5800/GT-2021-12-2-0527
88. Shardakova G.Yu., Pushkarev E.V., Kotov A.B., Simankova O.A. (2024) Evidence of the Early Precambrian Age of Metamorphic Rocks from the Ufaley Block (Middle Urals): Results of U–Th–Pb (LA-ICP-MS) Dating of Detrital Zircon from the Quaternary Deposits. Dokl. Earth Sci., 519(2), 2017-2022. http://dx.doi.org/10.1134/ S1028334X24604073
89. Scherer E.E., Whitehouse M.J., Münker C. (2007) Zircon as a Monitor of Crustal Growth. Elements, 3(1), 19-24.
90. Shardakova G.Yu., Savel’ev V.P., Puzhakov B.A., Petrov V.I. (2015) New data on the chemical composition and age of rocks of the Kozlinogorsk complex. Tr. IGG UrO RAN, vyp. 162, 148-154. (In Russ.)
91. Sindern S., Ronkin Yu.L., Hettsel’ R., Shchul’te B.A., Kramm U., Maslov A.V., Lepikhina O.P., Popova O.Yu. (2006) Taratashsky and Alexandrovsky metamorphic complexes (Southern Urals): P-T constraints. Tr. IGG UrO RAN, vyp. 154, 322-330.
92. Sircombe K.N., Bleeker W., Stern R. (2001) Archaean provenance: a systematic detrital zircon investigation of supracrustals in the Slave craton, Canada. Proc. Fourth Intern. Archaean Symp. Ext. Abstracts. AGSO-Geosci. Australia Record, 37, 263-265.
93. Slabunov A.I., Nesterova N.S., Egorov A.V., Kuleshevich L.V., Kevlich V.I. (2021) Age of the Archean strata with Banded Iron Formation in the Kostomuksha greenstone belt, Karelian craton, Fennoscandian shield: constraints on the geochemistry and geochronology of zircons. Geochem. Int., 59(4), 341-356. https://doi.org/10.31857/S0016752521040063
94. Smol’kin V.F., Skublov S.G., Vetrin V.R. (2020) Trace Elements Composition of Detrital Zircon of Archean age from Jatulian Terrigenous Rocks of Fennoscandia. Zapiski RMO, CXLIX(6), 85-100. (In Russ.)
95. Soboleva A.A., Andreichev V.L., Burtsev I.N., Nikulo va N.Yu., Khubanov V.B., Sobolev I.D. (2019) Detrital zircons from Upper Precambrian rocks of the Vymskaya series of the Middle Timan: u-pb age and sources of demolition. Bull. MOIP. Otd. Geol., 94(1), 3-16. (In Russ.) https://doi.org/10.31857/S086960552006012X
96. Somsikova A.V., Anosova M.O., Fedotova A.A., Fugzan M.M., Kirnozova T.I., Tevelev A.V., Astrakhantsev O.V. (2022) Isotope-Geochemical Features of the Migmatites of the Taratash Metamorphic Complex (Southern Urals). Geochem. Int., 60(10), 911-927. https://doi.org/10.31857/S0016752522100107
97. Sun S.S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: magmatism in the ocean basins. Geol. Soc. Lond. Spec. Publ., 42, 313-346.
98. Szczepański J., Turniak K., Anczkiewicz R.,·Gleichner P. (2020) Dating of detrital zircons and tracing the provenance of quartzites from the Bystrzyckie Mts: implications for the tectonic setting of the Early Palaeozoic sedimentary basin developed on the Gondwana margin. Int. J. Earth Sci., 109, 2049-2079. https://doi.org/10.1007/s00531-020-01888-8
99. Teipel U., Eichhorn R., Loth G., Rohrmuller J., Holl R., Kennedy A. (2004) U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for Upper Vendian and Lower Ordovician magmatism. Int. J. Earth Sci., 93(5), 782-801. https://doi.org/10.1007/s00531-004-0419-2
100. Terentiev R., Savko K., Petrakova M., Santosh M., Korish E. (2020) Paleoproterozoic granitoids of the Don terrane, East-Sarmatian Orogen: age, magma source and tectonic implications. Precambrian Res., 346, 105790. https://doi.org/10.1016/j.precamres.2020.105790
101. Tevelev A.V., Kosheleva I.A., Tevelev A.V., Khotylev A.O., Moseichuk V.M., Petrov V.I. (2015) New data on the isotopic age of the Taratash and Alexandrovsky metamorphic complexes. Vestn. MGU. Ser. 4. Geol., (1), 27-42. (In Russ.)
102. The 1:200,000 scale State Geological Map of the Russian Federation. Second edition. (2021) The South Ural series. N-41-I (Kyshtym). Explanatory note. Ministry of Natural Resources of Russia, Rosnedra, Chelyabinsk, JSC “Chelyabinsk Geoscience”. Moscow, Moscow branch of FSBI VSEGEI, 181 p. (In Russ.)
103. Wang F.Y., Liu S.A., Li S.G., Yongsheng H. (2013) Contrasting Zircon Hf-O Isotopes and Trace Elements between Ore-Bearing and Ore-Barren Adakitic Rocks in Central-Eastern China: Implications for Genetic Relation to Cu-Au Mineralization. Lithos, 156-159, 97-111. https://doi.org/10.1016/j.lithos.2012.10.017
104. Warr L.N. (2021) IMA–CNMNC approved mineral symbols. Mineral. Mag., 85, 291-320. https://doi.org/10.1180/mgm.2021.43
105. Wilde S.A., Valley J.W., Peck V.H., Graham C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175-178. https://doi.org/10.1038/35051550
106. Zeh A., Gerdes A., Klemd R., Led R., Barton J.M. (2008) U-Pb and Lu-Hf isotope record of detrital zircon grains from the Limpopo Belt – evidence for crustal recycling at the Hadean to early-Archean transition. Geochim. Cosmochim. Acta, 72, 5304-5329. http://dx.doi.org/10.1016/j.gca.2008.07.033
107. Zhong S., Feng C., Seltmann R., Li D., Qu H. (2018) Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition. Lithos, 314-315, 646-657. https://doi.org/10.1016/j.lithos.2018.06.029
108.
Review
For citations:
Shardakova G.Y., Pushkarev E.V., Simankova A.O., Chervyakovsky V.S., Chervyakovskaya M.V. Geochemistry and age of detrital zircon from the Quaternary deposits from the Ufaley block (Middle Urals): provenance and the problem of Precambrian. LITHOSPHERE (Russia). 2025;25(4):819-847. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-4-819-847. EDN: TXPUTT