Preview

LITHOSPHERE (Russia)

Advanced search

On the classification of geological and industrial types of magnesite deposits

https://doi.org/10.24930/1681-9004-2025-25-4-794-818

EDN: UINQNI

Abstract

Subject study. Classification of industrial types of magnesite deposits. Aim. To detail the existing classification of magnesite deposits based on a set of defining features.

Materials and methods. Materials – a set of lithological-facies, structuralmineralogical and isotope-geochemical features of magnesite deposits. Method – analysis of both our own and literary data for the classification of industrial types and clarification of their genesis.

Results. The author’s genetic classification of industrial magnesite deposits is given in accordance with the principles of “specific classiology” and the allocation of taxonomic (crystalline structure, shape of ore bodies) and descriptive features of deposits. Two groups of magnesites are distinguished: A – clear-crystalline in pre-Mesozoic sequences and B – cryptocrystalline in Mesozoic-Cenozoic sequences. Within group A, there are sheet-like deposits of crystalline magnesites (A-2) in carbonate strata and lenses of talcbreunnerite stones among hyperbasites (A-3). Both types have signs of hydrothermal-metasomatic formation. This group includes layers of micritic magnesites associated with subaerial coastal-marine conditions and microbial-diagenetic stages of carbonate accumulation (A-1). The second group includes types associated with the weathering crust of hyperbasites: infiltration-residual stockwork (B-1), sheet clastochemogenic (B-2) and biochemogenic sedimentary-diagenetic (B-3). The distribution of stable isotopes forms non-overlapping areas with reduced δ18O values in the group of crystalline magnesites and a maximum in micritic and even higher values for the group of cryptocrystalline.

Conclusions. The fundamental difference between the identified groups of magnesite deposits lies in the source of Mg: from seawater (types A-1 and A-2) or from hyperbasites (types A-3, Б-1, Б-2 и Б-3).

About the Author

M. T. Krupenin
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Mikhail T. Krupenin

15 Academician Vonsovsky st., Ekaterinburg 620110



References

1. Aharon P.A. (1988) Stable-isotope study of magnesites from the Rum Jungle Uranium Field, Australia: Implications for the origin of strata-bound massive magnesites. Chem. Geol., 69, 127-145.

2. Anfimov L.V. (1997) Lithogenesis in Riphean sedimentary strata of the Bashkir megaanticlinorium (South Urals). Еkaterinburg, Izd-vo UrO RAN Publ., 290 p. (In Russ.)

3. Anfimov L.V., Busygin B.D., Demina L.E. (1983) Satka magnesite deposit in the Southern Urals. Moscow, Nauka Publ., 86 p. (In Russ.)

4. Begzsuren B., Litsarev M.A., Tyazhelov A.G., Fin’ko V.I., Tserendorzh J. (1991) Bideriin-Gol magnesite deposit in the crust of weathering of ultrabasites in Western Mongolia. High-magnesian industrial minerals. Moscow, Nauka Publ., 145-153. (In Russ.)

5. Braithwaite C.J.R., Zеdеf V. (1996) Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Golu, Turkey. J. Sediment. Res. Sect. A, 66(5), 991-1002.

6. Course of solid mineral deposits. (1975) (Eds P.M. Tatarinov, A.E. Karyakin). Leningrad, Nedra Publ., 631 p. (In Russ.)

7. Dabitzias S.G. (1980) Petrology and genesis of the Vavdos cryptocrystalline magnesite deposits, Chalkidiki Peninsula, northern Greece. Econ. Geol., 75, 1138-1151.

8. Detriche S., Breheret J.G., Karrat L., Hinschberger F., Macaire J.J. (2013) Environmental controls on the Late Holocene carbonate sedimentation of a karstic lake in the Middle-Atlas Mountains (Lake Afourgagh, Morocco). Sedimentology, 60, 1231-1256.

9. Dong A., Zhu X., Li S., Kendall B., Wang Y., Gao Z. (2016) Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: constraints from Mg isotopes. Precambrian Res., 281, 673-683.

10. Eremin N.I. (2007) Non-metallic Minerals: 2nd ed. corr. and add. Moscow, Izd-vo Mosk. Universiteta Publ., 464 p. (In Russ.)

11. Fin’ko V.I. (1991) Magnesite deposits in terrigenous sedimentary rocks. High-magnesian industrial minerals. Moscow, Nauka Publ., 129-145. (In Russ.)

12. Frank T.D., Fielding C.R. (2003) Marine origin for Precambrian, carbonate-hosted magnesite. Geology, 31, 1101-1104.

13. Galimov E.M., Kuznetsova N.G., Prokhorov V.S. (1968) On the composition of the ancient atmosphere of the Earth in connection with the results of isotopic analysis of carbon in Precambrian carbonates. Geochem. Int., 11, 1376-1381.

14. Garber R.A., Harris P.M., Borer J.M. (1990) Occurrence and significance of Magnesite in Upper Permian (Guadalupian) Tansill and Yates Formations, Delaware basin, New Mexico. AAPG Bull., 74(2), 119-134.

15. Genetic types, distribution patterns and forecast of brucite and magnesite deposits. (1984) P.P. Smolin, A.I. Shevelev, L.P. Urasina et al. Moscow, Nauka Publ., 317 p. (In Russ.)

16. Ginzburg I.I., Rukavishnikova I.A. (1951) Minerals of the ancient crust of weathering of the Urals. Moscow, Izd-vo AN SSSR Publ., 714 p. (In Russ.)

17. Henchiri M., Slim-S’Himi N. (2006) Silicification of sulphate evaporates and their carbonate replacements in Eocene marine sediments, Tunisia: two diagenetic trends. Sedimentology, 53(5), 1135-1159.

18. Henjes-Kunst F., Prochaska W., Niedermayr A. et al. (2014) Sm–Nd dating of hydrothermal carbonate formation: An example from the Breitenau magnesite deposit (Styria, Austria) Chem. Geol., 387, 184-201.

19. Ivlev I.F., Pustyl’nikov A.M., Chekanov V.I. (1985) On the regional distribution of magnesites in the deposits of the salt-bearing formation of the southern Siberian platform. Russ. Geol. Geophys., 11, 16-24.

20. Kazakov A.V., Tikhomirova M.M., Plotnikova V.I. (1957) The system of carbonate equilibria (dolomite, magnesite). Moscow, Leningrad, Publishing house of the USSR Academy of Sciences. (Trudy IGN, vyp. 152. Geol. Ser., (64), 13-58). (In Russ.)

21. Keeling J.L., Horn R., Wilson I. (2019) New kiln technology expands market opportunities for cryptocrystalline magnesite. MESA J., 89(1), 22-38.

22. Kilias S.P., Pozo M., Bustillo M. et al. (2006) Origin of the Rubian carbonate hosted magnesite deposit, Galicia, NW Spain: mineralogical, REE, fluid inclusion and isotope evidence. Mineral. Depos., 41, 713-733.

23. Kralik M., Aharon P., Schroll E., Zachmannd D. (1989) Carbon and oxygen isotope systematics of magnesites. Magnesite – Geology, Mineralogy, Geochemistry, Formation of Mg-Carbonates. (Ed. P. Möller). Monogr. Ser. Miner. Depos., 28, 197-223.

24. Krupenin M.T. (2024) The stages of geological development of sedimentary basins of the Riphean stratotype area (Southern Urals) and their reflection in minerageny. Trudy IGG UrO RAN, vyp. 168, 27-36. https://doi.org/10.24930/0371-7291-2024-168-027-036 (In Russ.)

25. Krupenin M.T., Garaeva A.A., Klyukin Yu.I., Baltybaev Sh.K., Kuznetsov A.B. (2013) Fluid regime of magnesite metasomatism at the Satka deposits of the South-Ural province (thermo-cryometry of fluid inclusions). Lithosphere (Russia), (2), 120-134. (In Russ.)

26. Krupenin M.T., Kol’tsov A.B. (2017) Geology, composition, and physicochemical model of sparry magnesite deposits of the Southern Urals. Geol. Ore Depos., 59(1), 14-35 (translated from Geol. Rud. Mestorozhd., 59(1), 17-40).

27. Krupenin M.T., Kuznetsov A.B., Konstantinova G.V. (2016) Sr-Nd Systematics and REE distribution in the type magnesite deposits in Lower Riphean of South Urals province. Lithosphere (Russia), (5), 58-80. (In Russ.)

28. Krupenin M.T., Michurin S.V., Sharipova. A.A., Garaeva A.A., Zamyatin D.A., Gulyaeva T.Ya. (2019) Formation conditions of ferromagnesian metasomatic carbonates in the lower riphean terrigenous–carbonate rocks of the Southern Urals. Lithol. Miner. Res., 54(3), 248-261 (translated from Litol. Polez. Iskop., (3), 262-277). https://doi.org/10.31857/S0024-497X20193262-277

29. Kuznetsov V.G. (2004) Relation of cyanophyte evolution and stratigraphic placement of magnesites. Izvestiyа vyzov. Geologiyа i Razvedka, (4), 30-35. (In Russ.)

30. Kuznetsov V.G., Belyakov M.A., Skobeleva N.M., Sokolova T.F. (2003) Magnesite and calcite in the Riphean strata of Yurubchen-Tokhomsk zone. Dokl. Earth Sci., 392(1), 89-91.

31. Kuznetsov V.G., Skobeleva N.M. (2005) Silicification process of Riphean carbonate strata (Yurubchen-Tokhomsk zone, Siberian platform). Litol. Polez. Iskop., (6), 637-650. (In Russ.)

32. Lackner K.S., Wendt C.H., Butt D.P., Joyce E.L., Sharp D.H. (1995) Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153-1170.

33. Last W.M. (1992) Petrology of modern carbonate hardgrounds from East Basin Lake, a saline maar lake, southern Australia. Sediment. Geol., 81, 215-229.

34. Lugli S., Morteani G., Blamart D., (2002) Petrographic, REE, fluid inclusion and stable isotope study of magnesite from the Upper Triassic Burano Evaporites (Secchia Valley, northern Appenines): contributions from sedimentary, hydrothermal and metasomatic sources. Mineral. Depos., 37, 480-494.

35. Lutsko J.F. (2017) Novel paradigms in nonclassical nucleation theory. New perspectives on mineral nucleation and growth. Springer, 25-41. http://refhub.elsevier.com/S0009-2541(24)00031-7/rf0200

36. Mavromatis V., Power I.M., Harrison A.L., Beinlich A., Dipple G.M., Bénézeth P. (2021) Mechanisms controlling the Mg isotope composition of hydromagnesitemagnesite playas near Atlin, British Columbia, Canada. Chem. Geol., 579, 120325. http://dx.doi.org/10.1016/j.chemgeo.2021.120325

37. McCaffrey M.A., Lazar B., Holland H.D. (1987) The evaporation path of seawater and the coprecipitation of Br− and K+ with halite. J. Sediment. Petrol., 57(5), 928-937.

38. Melezhik V.A., Fallick A.E., Medvedev P.V., Makarikhin V.V. (2001) Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments. Sedimentology, 48, 379-397.

39. Methodical recommendations for the application of the Classification of Deposit Reserves and Forecast Resources of Solid Minerals. Magnesite and Brucite. (2007) Moscow, FGU GKZ, 32 p. (In Russ.)

40. Mineral Resources of Australia and Papua New Guinea. V. 2. (1980) Moscow, Mir Publ., 702 p. (In Russ.)

41. Mirnejad H., Aminzadeh M., Ebner F., Unterweissacher T. (2015) Geochemistry and origin of ophiolite hosted Derakht-Senjed magnesite, NE Iran. Mineral. Petrol., 109(6), 693-704. https://link.springer.com/article/10.1007/s00710-015-0408-0

42. Möller P. Nucleation processes of magnesite. Magnesite – Geology, Mineralogy, Geochemistry, Formation of Mg-Carbonates. (Ed. P. Möller). Monogr. Ser. Miner. Depos., 28, 287-292.

43. Novoselov A., Konstantinov A., Lim A., Goetschl K., Loiko S., Mavromatis V., Pokrovsky O. (2019) Mg-rich authigenic carbonates in coastal facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation. Minerals, 9(12), 763. https://doi.org/10.3390/min9120763

44. Ogorodnikov V.N., Sazonov V.N., Polenov Yu.A., Grigoriev V.V. (2000) Shabrovsky ore district (Middle Urals). Geological position, productive material complexes, mineralization-mineralization: Scientific publication. Ekaterinburg, UGGGA Publ., 80 p. (In Russ.)

45. Ovchinnikova G.V., Kuznetsov A.B., Krupenin M.T., Vasilyeva I.M., Kaurova O.K. (2018) Pb-Pb age of the Bakal Ore Field Riphean Magnesite. Dokl. Earth Sci., 481(2), 1040-1044 (translated from Dokl. RAN, 481(5), 529-533).

46. Pokrovskii M.P. (2014) Introduction to classiology. Ekaterinburg, IGG UrO RAN Publ., 484 p. (In Russ.)

47. Pohl W. (1990) Genesis of magnesite deposits – models and trends. Geol. Rund., 79(2), 291-299.

48. Power I.M., Wilson S.A., Thom J.M., Dipple G.M., Gabites J.E., Southam G. (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: a biogeochemical model for CO2 sequestration. Chem. Geol., 260, 286-300. https://doi.org/10.1016/j.chemgeo.2009.01.012

49. Power I.M., Wilson S.A., Harrison A.L., Dipple G.M., McCutcheon J., Southam G., Kenward P.A. (2014) A depositional model for hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Sedimentology, 61, 1701-1733. http://dx.doi.org/10.1111/sed.12124

50. Prochaska W. (2016) Genetic concepts on the formation of the Austrian magnesite and siderite mineralizations in the Eastern Alps of Austria. Geologia Croatica, 69(1), 31-38. http://dx.doi.org/10.4154/GC.2016.03

51. Prochaska W. (2000) Magnesite and talc deposits in Austria. Mineral. Slovaca, 32, 543-548.

52. Prochaska W., Krupenin M. (2013) Evidence of Inclusion Fluid Chemistry for the Formation of Magnesite and Siderite Deposits in the Southern Urals. Mineral. Petrol., 107(1), 53-65. http://dx.doi.org/10.4154/GC.2016.03

53. Raudsepp M.J., Wilson S., Zeyen N., Arizaleta M.L., Power I.M. (2024) Magnesite everywhere: Formation of carbonates in the alkaline lakes and playas of the Cariboo Plateau, British Columbia, Canada. Chem. Geol., 648, 121951. http://dx.doi.org/10.1016/j.chemgeo.2024.121951

54. Sazonov V.N. (1976) Ratio of iron content of coexisting minerals from metasomatites of the beresite-listvenite formation of the Urals as an indicator of their physicochemical conditions of formation. Problems of bimineral thermobarometry. Sverdlovsk, 41-57. (In Russ.)

55. Scheller E.L., Swindle C., Grotzinger J., Barnhart H., Bhattacharjee S., Ehlmann B.L., (2021) Formation of magnesium carbonates on Earth and implications for Mars. J. Geophys. Res.: Planets, 126, 32. e2021JE006828. http://dx.doi.org/10.1029/2021JE006828

56. Schidlowski M., Eichmann R., Junge C.E. (1975) Precambrian sedimentary carbonates: carbon and oxygen isotope chemistry and implications for the terrestrial oxygen budget. Precambrian Res., 2, 1-69.

57. Schmidt H. (1987) Turkey’s Salda Lake: a genetic model for Australia’s newly discovered magnesite deposits. Industr. Miner., August, 19-29.

58. Schroll E. (2002) Genesis of magnesite deposits in the view of isotope geochemistry. Boletim Paranaense de Geociências, 50, 59-68. http://dx.doi.org/10.5380/geo.v50i0.4158

59. Shcherbakova T.A. (2018) Magnesite formation in Cenozoic sedimentary complexes. Doct. geol. and min. sci. diss. Kazan, KFU Publ., 266 p. (In Russ.)

60. Shevelev A.I., Shcherbakova T.A. (1991) Geological structure and localization of Cenozoic magnesites. High-magnesian industrial minerals. Moscow, Nauka Publ., 153-157. (In Russ.)

61. Shevelev A.I., Urasina L.P. (1991) Industrial-genetic types of magnesite deposits. High-magnesian industrial minerals. Moscow, Nauka Publ., 82-91. (In Russ.)

62. Shevelev A.I., Zuev L.V., Fedorov V.P. (2003) The raw Material base of magnesite and brucite in Russia. Kazan, Novoe Znanie Publ., 161 p. (In Russ.)

63. Shirokova L.S., Mavromatis V., Bundeleva A., Pokrovsky O.S., Bénézeth P., Gérard E., Pearce C.R., Oelkers E.H. (2013) Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes. Aquatic Geochemistry, 19(1), 1-24. https://doi.org/10.1007/s10498-012-9174-3

64. Siegl W. (1984) Reflections on the origin of sparry magnesite deposits. Singenesis and epigenesist in the formation of mineral deposits. (Eds A. Waschkuhn). Springer-Verlag Berlin Heidelberg, 177-182.

65. Sivash V.G., Perepelitsyn V.A., Mityushov N.A. (2001) The Fused Periclase. Ekaterinburg, Ural’skii Rabotchii Publ., 584 p. (In Russ.)

66. Smolin P.P. (1991) Minerageny, problems of development of raw material resources and rational use of magnesite, brucite and talc. High-magnesian raw materials. Moscow, Nauka Publ., 16-61. (In Russ.)

67. Stepanov O.A., Usanov G.E. (1991) Malokhingan magnesite-brucite province and potential resources of highmagnesial minerals. High-magnesian industrial minerals. Moscow, Nauka Publ., 157-171. (In Russ.)

68. The General formation-genetic types Magnesite Deposits. (1993) L.P. Urasina, T.A. Drugaleva, P.P. Smolin. Moscow, Nauka Publ., 157 p. (In Russ.)

69. United States Geological Survey 2019. (2019) Magnesium compounds. Mineral commodity summaries 2019. U.S. Geological Survey, Reston, Virginia. 100-103.

70. Vance R.E., Mathewes R.W., Clague J.J. (1992) 7000-year record of lake-level change on the northern Great Plains: a high-resolution proxy of past climate. Geology, 20, 879-882. http://dx.doi.org/10.1016/j.quascirev.2011.05.015

71. Von der Borch C. (1965) The distribution and preliminary geochemistry of modem carbonate sediments of the Coorong area, South Australia. Geochim. Cosmochim. Acta, 29, 781-799.

72. Zedef V., Russell M.J., Fallick A.E. (2000) Genesis of Vein Stockwork and Sedimentary Magnesite and Hydromagnesite Deposits in the Ultramafic Terranes of Southwestern Turkey: A Stable Isotope Study. Econ. Geol., 95, 429-446. http://dx.doi.org/10.2113/gsecongeo.95.2.429


Review

For citations:


Krupenin M.T. On the classification of geological and industrial types of magnesite deposits. LITHOSPHERE (Russia). 2025;25(4):794-818. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-4-794-818. EDN: UINQNI

Views: 63


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)