Riphean stratotype mudrocks composition and some paleoclimate quantitative characteristics
https://doi.org/10.24930/1681-9004-2025-25-4-725-747
EDN: VFXEJM
Abstract
The object of research is Lower, Middle and Upper Riphean mudrocks in the stratotype area – southern Urals western slope Bashkirian megaanticlinorium. We analyzed major element oxides composition of the 154 samples selected from shales and mudstones.
Research method. Mean annual temperature (MAT) and precipitation (MAP), also as Köppen aridity index (AIKöppen) was calculated by using different modern approach for ancient catchments. Such computations became possible thanks to CIA values corrected via Al2O3–(CaO* + Na2O)–K2O diagram and granites actual (not predicted) weathering trend in humid temperate climate. In addition, we apply not only strata but RW-index value clusterization for our data base.
Results. According to estimated paleotemperature values different Riphean catchment areas may be considered as the they existed in humid temperate or cold arid climate. However calculated MAP and AIKöppen are more likely to be invalid through positive correlation between MAP and MAT variables. That is why we also present few examples of MAP estimation for Upper Riphean era by using AIKöppen boundary values and MAT values.
Conclusions. We think that such reconstruction tactics as paleotemperature evaluation in complex with subsequent applying of Köppen aridity index and the paleoclimate mineral proxies are the best for the quantitative paleoclimate characteristics estimation for Precambrian and, more than likely, beyond. This approach makes possible computation of the MAP lower limit for humid climates and MAP upper limit for arid climates.
Keywords
About the Authors
O. Yu. MelnichukRussian Federation
Oleg Yu. Melnichuk
15 Academician Vonsovsky st., Ekaterinburg 620110
A. V. Maslov
Russian Federation
Andrey V. Maslov
15 Academician Vonsovsky st., Ekaterinburg 620110
References
1. Algeo T.J., Li C. (2020) Redox classification and calibration of redox thresholds in sedimentary systems. Geochim. Cosmochim. Acta, 287, 8-26. https://doi.org/10.1016/j.gca.2020.01.055
2. Anfimov L.V. (1997) Lithogenesis in the Riphean sedimentary strata of the Bashkir meganticlinorium (Southern Urals). Ekaterinburg, UrO RAN, 288 p. (In Russ.)
3. Babechuk M.G., Widdowson M., Kamber B.S. (2014) Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol., 363, 56-75. https://doi.org/10.1016/j.chemgeo.2013.10.027
4. Bartley J.K., Khan L.C., McWilliams J.L., Stagner A.F. (2007) Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia): signal recovery in a fold-and-thrust belt. Chem. Geol., 237, 211-232. https://doi.org/10.1016/j.chemgeo.2006.06.018
5. Cho T., Ohta T. (2022). A robust chemical weathering index for sediments containing authigenic and biogenic materials. Palaeogeogr., Palaeoclimatol., Palaeoecol., 608, 111288. https://doi.org/10.1016/j.palaeo.2022.111288
6. Condie K.C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol., 104, 1-37. https://doi.org/10.1016/0009-2541(93)90140-E
7. Deng K., Yang S., Guo Y. (2022) A global temperature control of silicate weathering intensity. Nat. Commun., 13, 1781. https://doi.org/10.1038/s41467-022-29415-0
8. Duzgoren-Aydin N.S., Aydin A., Malpas J. (2002) Reassessment of chemical weathering indices: case study of piroclastic rocks of Hong Kong. Eng. Geol., 63, 990-119. https://doi.org/10.1016/S0013-7952(01)00073-4
9. Fedo C.M., Nesbitt W.H., Young G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
10. Gareev E.Z. (1982) Geochemical features of the carbonate rocks in the Riphean Uk and Katav Formations key sections in the Southern Urals. Upper Precambrian and Paleozoic in the Southern Urals. (Ed. by M.A. Garris). Ufa, BFAN SSSR, 36-46. (In Russ.)
11. Gareev E.Z. (1987) Conditions for the formation of Zilmerdak deposits according to geochemical data using the example of a stratotype section along the river. Maly Inzer (Southern Urals). Geochemistry of sedimentary formations of the Urals. (Ed. by L.V. Anfimov, M.T. Krupenin). Sverdlovsk, UNTs AN SSSR, 29-36. (In Russ.)
12. Gareev E.Z. (1988) Geochemical features and sedimentation conditions of deposits of the Inzer Formation in the stratotype section in the Southern Urals. Upper Precambrian of the Southern Urals and eastern Russian Plate. (Ed. by V.I. Kozlov). Ufa, BFAN SSSR, 29-35. (In Russ.)
13. Gareev E.Z. (1989) Geochemistry of sedimentary rocks in the Riphean stratotype section: Ex. Abstr. Ph. D. (Geol.-mineral.). Moscow, GEOKHI, 24 p. (In Russ.)
14. Gareev E.Z., Veretennikova T.Yu. (1987) Petrochemistry and geochemistry of the muddy-carbonate rocks in the Avzyan Formation stratotype section in the Southern Urals. Trace elements in magmatic, metamorphic and ore bearing strata in the Urals. (Ed. by D.N. Salikhov). Ufa, BFAN SSSR, 61-68. (In Russ.)
15. Garzanti E., Resentini A. (2016) Provenance control on chemical indices of weathering (Taiwan river sands). Sediment. Geol., 336, 81-95. https://doi.org/10.1016/j.sedgeo.2015.06.013
16. Garzanti E., Padoan M., Setti M., López-Galindo A., Villa I.M. (2014) Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chem. Geol., 366, 61-74. https://doi.org/10.1016/j.chemgeo.2013.12.016
17. Garzanti E., Padoan M., Setti M., Peruta L., Najman Y., Villa I.M. (2013) Weathering geochemistry and Sr-Nd isotope fingerprinting of equatorial upper Nile and Congo muds. Geochem. Geophys. Geosyst., 14, 292-316. https://doi.org/10.1002/ggge.20060
18. Genetic types, distribution patterns and brucite and magnesite discovery estimation. (1984) (Ed. by V.P. Petrov). Moscow, Nauka Publ., 317 p. (In Russ.)
19. Gillot T., Cojan I., Badia D. (2022) Paleoclimate instabilities during late Oligocene – Early Miocene in SW Europe from new geochemical climofunctions based on soils with pedogenic carbonate. Palaeogeogr., Palaeoclimatol., Palaeoecol., 591, 110882. https://doi.org/10.1016/j.palaeo.2022.110882
20. Golbert A.V. (1987) Regional paleoclimatology basics. Moscow, Nedra Publ., 221 p. (In Russ.)
21. Golovanova I.V., Danukalov K.N., Salmanova R.Yu., Levashova N.M., Parfiriev N.P., Sergeeva N.D., Meert J.G. (2023) Magnetic field hyperactivity during the early Neoproterozoic: A paleomagnetic and cyclostratigraphic study of the Katav Formation, southern Urals, Russia. Geosci. Front., 14, 101558. https://doi.org/10.1016/j.gsf.2023.101558
22. Gonzalez-Alvarez I.J. (2005) Geochemical Study of the Mesoproterozoic Belt-Purcell Supergroup, Western North America: Implications for Provenance, Weathering and Diagenesis. PhD Dissertation. Saskatoon, University of Saskatchewan, 243 p. https://hdl.handle.net/10388/etd-01032006-213130
23. Gonzalez-Alvarez I., Kerrich R. (2012) Weathering intensity in the Mesoproterozoic and modern large-river systems: A comparative study in the Belt-Purcell Supergroup, Canada and USA. Precambrian Res., 208-211, 174-196. https://doi.org/10.1016/j.precamres.2012.04.008
24. Gorokhov I.M., Zaitseva T.S., Kuznetsov A.B., Ovchinnikova G.V., Kovach V.P., Konstantinova G.V., Turchenko T.L., Vasil’eva I.M., Arakelyants M.M. (2019) Isotope systematics and age of authigenic minerals in shales of the Upper Riphean Inzer Formation, South Urals. Stratigr. Geol. Correl., 27(2), 133-158 (translated from Stratigr. Geol. Korrel., 27(2), 3-30). https://doi.org/10.1134/S0869593819020035
25. Gorozhanin V.M., Michurin S.V., Voikina Z.A., Sharipova A.A., Biktimerova Z.R., Sultanova A.G. (2019) Marino-glacial deposits in the Tolparovo section of the Upper Precambrian (Zilim and Malyi Tolpar rivers). Geol. Vestn., (3), 69-92. (In Russ.) https://doi.org/10.31084/2619-0087/2019-3-6
26. Gwizd S., Fedo C., Grotzinger J., Banham S., Rivera-Hernandez F., Stack K.M., Siebach K., Thorpe M., Thompson L., O’Connell-Cooper C., Stein N., Edgar L., Gupta S., Rubin D., Sumner D., Vasavada A.R. (2022) Sedimentological and geochemical perspectives on a marginal lake environment recorded in the Hartmann’s Valley and Karasburg members of the Murray formation, Gale crater, Mars. J. Geophys. Res. Planets, 127, e2022JE007280. https://doi.org/10.1029/2022JE007280
27. Harnois L. (1988) The CIW index: a new chemical index of weathering. Sed. Geol., 55(3-4), 319-322. https://doi.org/10.1016/0037-0738(88)90137-6
28. Kagarmannova N.I. (1998) Riphean Bashkirian meganticlinorium mudrocks. Ekaterinburg, IGG UrO RAN, 158 p. (In Russ.)
29. Karpova G.V., Timofeeva Z.V. (1975) Lithogenesis and stages of change in Riphean deposits of the Southern Urals. Litol. Polez. Iskop., (2), 45-55. (In Russ.)
30. Keller B.M., Weiss A.F., Gorozhanin V.M. (1984) Tolparovsky section of the Upper Precambrian (Southern Urals). Izv. AN SSSR. Ser. Geol., (9), 119-124. (In Russ.)
31. Köppen W. (1923) Die Klimate der Erde: Grundriss der Klimakunde. Berlin, Walter de Gruyter & Company, 379 p. (In German)
32. Kovalev S.G., Maslov A.V., Kovalev S.S., Vysotskii S.I. (2019) New data on the Sm-Nd age of picrites in the Lysogorsk complex, Southern Urals. Dokl. Earth Sci., 488(1), 1018-1021 (translated from Dokl. RAN, 488(1), 595-598). https://doi.org/10.1134/S1028334X19090034
33. Krasnobaev A.A., Kozlov V.I., Puchkov V.N., Busharina S.V., Sergeeva N.D., Paderin I.P. (2013б) Zircon geochronology of the Mashak volcanic rocks and the problem of the age of the Lower-Middle Riphean boundary (Southern Urals). Stratigr. Geol. Correl., 21(5), 465-481 (translated from Stratigr. Geol. Korrel., 21(5), 3-20). https://doi.org/10.1134/S0869593813050055
34. Krasnobaev A.A., Kozlov V.I., Puchkov V.N., Sergeeva N.D., Busharina S.V., Lepekhina E.N. (2013a) Zirconology of Navysh volcanic rocks of the Ai suite and the problem of the age of the Lower Riphean boundary in the Southern Urals. Dokl. Earth Sci., 448(2), 185-190 (translated from Dokl. RAN, 448(4), 437-442). https://doi.org/10.1134/S1028334X13020050
35. Krupenin M.T. (1999) Rock formation environments of the Lower Riphean siderite-bearing Bakal Formation. Ekaterinburg, UrO RAN, 257 p. (In Russ.)
36. Krupenin M.T., Larionov N.N., Gulyaeva T.Ya., Demchuk I.G. (2002) New data on the features of sedimentation in the basins of the Avzyan time of the Middle Riphean. Tr. IGG UrO RAN, vyp. 149, 43-49. (In Russ.)
37. Kuznetsov A.B., Bekker A., Ovchinnikova G.V., Gorokhov I.M., Vasilyeva I.M. (2017) Unradiogenic strontium and moderate-amplitude carbon isotope variations in early Tonian seawater after the assembly of Rodinia and before the Bitter Springs Excursion. Precambrian Res., 298, 157-173. https://doi.org/10.1016/j.precamres.2017.06.011
38. Kuznetsov A.B., Ovchinnikova G.V., Gorokhov I.M., Kaurova O.K., Krupenin M.T., Maslov A.V. (2003) Sr isotope characteristics and Pb-Pb age of limestones of the Bakal Formation (type section of the Lower Riphean, Southern Urals). Dokl. RAN, 391(6), 794-798. (In Russ.)
39. Kuznetsov A.B., Ovchinnikova G.V., Semikhatov M.A., Gorokhov I.M., Kaurova O.K., Krupenin M.T., Vasil’eva I.M., Gorokhovskii B.M., Maslov A.V. (2008) The Sr isotopic characterization and Pb-Pb age of carbonate rocks from the Satka Formation, the Lower Riphean Burzyan Group of the Southern Urals. Stratigr. Geol. Correl., 16(2), 120-137 (translated from Stratigr. Geol. Korrel., 16(2), 16-34). https://doi.org/10.1134/S0869593808020020
40. Li C., Yang S. (2010). Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? Amer. J. Sci., 310, 111-127. https://doi.org/10.2475/02.2010.03
41. Li Z.-X., Liu Y., Ernst R. (2023) A dynamic 2000–540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth-Sci. Rev., 238, 104336. https://doi.org/10.1016/j.earscirev.2023.104336
42. Map of Precambrian formations of the Russian Platform and its folded framing (with removed Phanerozoic sediments). (1983) Scale 1 : 2 500 000. Explanatory note. Leningrad, VSEGEI, 172 p. (In Russ.)
43. Maslov A.V. (1988) Lithology of the Upper Riphean deposits of the Bashkir meganticlinorium. Moscow, Nauka Publ., 133 p. (In Russ.)
44. Maslov A.V. (2000) Some Specific Features of Early Vendian Sedimentation in the Southern and Middle Urals. Lithol. Miner. Res., 35(6), 556-570. (translated from Litol. Polez. Iskop., (6), 624-639). https://doi.org/10.1023/A:1026649531983
45. Maslov A.V. (2014) Lithogeochemical image of the Vendian Asha Series un the Southern Urals western slope. Lithosphere (Russia), (1), 13-32. (In Russ.)
46. Maslov A.V. (2025) αAlE indices of Riphean clay rocks of the Southern Urals and weathering features (first attempt at analysis). Lithosphere (Russia), 25(1), 96-113. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-1-96-113
47. Maslov A.V., Gareev E.Z. (1988) Lithological and geochemical features of the Upper Riphean deposits of the Bashkir meganticlinorium in the Southern Urals. Sov. Geol., (2), 57-66. (In Russ.)
48. Maslov A.V., Gareev E.Z. (1999) Petrochemical features of Late Precambrian sedimentary associations of the Bashkir meganticlinorium. Litol. Polez. Iskop., (1), 78-91. (In Russ.)
49. Maslov A.V., Gorozhanin V.M. (1998) Lower Uk level of the Late Riphean in the stratotype area: paleogeographic and sedimentary environment parameter features. Tr. IGG UNTs AN SSSR, vyp. 145, 15-20. (In Russ.)
50. Maslov A.V., Podkovyrov V.N. (2023a) Chemical Weathering Indexes: Implication for Paleoclimatic Reconstructions, with the Vendian–Lower Cambrian Section of Podolian Transnistria as Example. Lithol. Miner. Res., 58(3), 213-234 (translated from Litol. Polez. Iskop., (3), 249-273). https://doi.org/10.1134/S0024490222700043
51. Maslov A.V., Podkovyrov V.N. (2023) Intensity of Chemical Weathering in the Late Precambrian: New Data on the Riphean Stratotype, South Urals. Stratigr. Geol. Correl., 31(1), 1-16 (translated from Stratigr. Geol. Korrel., 31(2), 3-21). https://doi.org/10.1134/S0869593823020065
52. Maslov A.V., Grazhdankin D.V., Goj Yu.Yu. (2013) Primitive paleosols in South Urals Zilmerdak Formation (structural and lithogeochemical aspects). Lithosphere (Russia), (2), 45-64. (In Russ.)
53. Maslov A.V., Krupenin M.T., Gareev E.Z. (2003) Lithological, lithochemical and geochemical indicators of paleoclimate (using the example of the Riphean of the Southern Urals). Litol. Polez. Iskop., (5), 427-446. (In Russ.)
54. Maslov A.V., Gareev E.Z., Krupenin M.T., Demchuk I.G. (1999) Thin-grained aluminosiliconclastics in the Upper Precambrian section of the Bashkir meganticlinorium (towards the reconstruction of formation conditions). Ekaterinburg, IGG UrO RAN, 324 p. (In Russ.)
55. Maslov A.V., Krupenin M.T., Gareev E.Z., Anfimov L.V. (2001) Riphean of the western slope of the Southern Urals (classical sections, sedimentation and lithogenesis, minerageny, geological natural monuments). Ekaterinburg, IGG UrO RAN, V. I, 351 p.; V. II, 134 p.; V. III, 130 p.; V. IV, 103 p. (In Russ.)
56. Maslov A.V., Podkovyrov V.N., Gareev E.Z., Graunov O.V. (2016) Paleoclimate changes in the Late Precambrian: evidence from the Upper Precambrian section of the South Urals. Lithol. Miner. Res., 51(2), 117-135 (translated from Litol. Polez. Iskop., (2), 129-149). https://doi.org/10.1134/S002449021602005X
57. Maslov A.V., Melnichuk O.Yu., Kuznetsov A.B., Podkovyrov V.N. (2024) Lithogeochemistry of upper Precambrian terrigenous rocks of Belarus. Communication 2. Provenance, paleogeodynamics, paleogeography, paleoclimate. Litol. Polez. Iskop., (5), 515-543. https://doi.org/10.31857/S0024497X2405001
58. Maslov A.V., Erokhin Y.V., Gerdes A., Ronkin Y.L., Ivanov K.S. (2018) First results of U-Pb LA–ICP–MS isotope dating of detrital zircons from arkose sandstone of the Biryan subformation of Zilmerdak formation (Upper Riphean, South Urals). Dokl. Earth Sci., 482(2), 1275-1277 (translated from Dokl. RAN, 482(5), 558-561). https://doi.org/10.1134/S1028334X18100136
59. Maslov A.V., Kuznetsov A.B., Kramchaninov A.Y., Shpakovich L.V., Gareev E.Z., Podkovyrov V.N., Kovalev S.G. (2022) Provenances of the Upper Precambrian clay rocks in the Southern Urals: results of geochemical and Sm-Nd isotope geochemical investigations. Stratigr. Geol. Correl., 30(1), 30-51 (translated from Stratigr. Geol. Korrel., 30(1), 33-54). https://doi.org/10.1134/S0869593822010038
60. McLennan S.M. (1993) Weathering and Global Denudation. J. Geol., 101, 295-303. https://doi.org/10.1086/648222
61. Melezhik V.A., Predovsky A.A. (1982) Early Proterozoic diagenesis geochemistry (by the example in the Baltic shield north-east). Leningrad, Nauka Publ., 208 p. (In Russ.)
62. Meunier A. (1980) Les mécanismes de l’altération des granites et le rôle des microsystèmes: étude des arènes du massif granitique de Parthenay (Deux-Sèvres). Memoir. Soc. Géol. France, 140, 1-80. (In French)
63. Meunier A., Caner L., Hubert F., El Albani A., Pret D. (2013). The weathering intensity scale (WIS): An alternative approach of the Chemical Index of Alteration (CIA). Amer. J. Sci., 313, 113-143. https://doi.org/10.2475/02.2013.03
64. Negrutsa T.F. (1985) About possibility to Precambrian paleoclimate reconstruction. Modern paleoclimatology and sedimentology struggles. (Ed. by N.N. Verzilin). Leningrag, LGU, 69-85. (In Russ.)
65. Negrutsa T.F., Negrutsa V.Z. (2000) Lithpgenetical assemblages and their signification for the Precambrian paleoclimate reconstruction. Sedimentology, geochemistry and ore genesis struggles in the sedimentary process framework. V. 2. Moscow, GEOS Publ., 66-70. (In Russ.)
66. Nesbitt H.W., Young G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717. https://doi.org/10.1038/299715a0
67. Nesbitt H.W., Young G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, 48, 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
68. Nesbitt H.W., Fedo C.M., Young G.M. (1997) Quartz and Feldspar Stability, Steady and Non‐Steady‐State Weathering, and Petrogenesis of Siliciclastic Sands and Muds. J. Geol., 105, 173-192. https://doi.org/10.1086/515908
69. Ohta T., Arai H. (2007). Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chem. Geol., 240, 280-297. https://doi.org/10.1016/j.chemgeo.2007.02.017
70. Ovchinnikova G.V., Kuznetsov A.B., Vasil’еva I.M., Gorokhov I.M., Krupenin M.T., Gorokhovskii B.M., Maslov A.V. (2013) Pb-Pb age and sr isotopic characteristic of the Middle Riphean phosphorite concretions: the Zigaza-Komarovo formation of the South Urals. Dokl. Earth Sci., 451(2), 798-802 (translated from Dokl. RAN, 451(4), 430-434). https://doi.org/10.1134/ S1028334X13080047
71. Paleoclimate reconstruction methodics. (1985) (Ed. by A.A. Velichko). Moscow, Nauka Publ., 188 p. (In Russ.)
72. Parker A. (1970) An index of weathering for silicate rocks. Geol. Mag., 107, 501-504. https://doi.org/10.1017/S0016756800058581
73. Parnachev V.P. (1987) Fluorine and chlorine in Late Precambrian sedimentary rocks of the Bashkir meganticlinorium in connection with issues of their sedimentation. Geochemistry of volcanic and sedimentary rocks of the Southern Urals. (Ed. by V.P. Parnachev, V.V. Zaikov). Sverdlovsk, UNTs AN SSSR, 35-46. (In Russ.)
74. Parnachev V.P. (1988) Magmatism and sedimentation in the Late Precambrian history of the Southern Urals. Ex. Abstr. Dokt. geol. and min. sci. diss. Sverdlovsk, IGG UrO RAN, 33 p. (In Russ.)
75. Penman D.E., Caves Rugenstein J.K., Ibarra D.E., Winnick M.J. (2020) Silicate weathering as а feedback and forcing in Earth’s climate and carbon cycle. Earth-Sci. Rev., 209, 103298. https://doi.org/10.1016/j.earscirev.2020.103298
76. Perri F. (2020) Chemical weathering of crystalline rocks in contrasting climatic conditions using geochemical proxies: An overview. Palaeogeogr., Palaeoclimatol., Palaeoecol., 556, 109873. https://doi.org/10.1016/j.palaeo.2020.109873
77. Podkovyrov V.N., Gareev E.Z. (1995) Evolution of the composition of terrigenous rocks of the Yurmatinsky series of the Riphean of the Southern Urals. Geological study and use of subsoil. Scientific and technical information Sat. V. 1. Moscow, Geoinformmark Publ., 25-36. (In Russ.)
78. Puchkov V.N. (2010) Geology of the Urals and Cis-Urals (actual problems of stratigraphy, tectonics, geodynamics and metallogeny). Ufa, DesignPoligraphService Publ., 280 p. (In Russ.)
79. Puchkov V.N., Sergeeva N.D., Ratov A.A. (2014) The Lower Vendian in the Southern Urals: peculiarities of a composition and structure. Geol. sb., (11), 22-36. (In Russ.)
80. Quan C., Han S., Utescher T., Zhang C., Liu Y.-S. (2013) Validation of temperature–precipitation based aridity index: paleoclimatic implications. Palaeogeogr., Palaeoclimatol., Palaeoecol., 386, 86-95. https://doi.org/10.1016/j.palaeo.2013.05.008
81. Raaben M.E. (1975) Upper Riphean as GSSP part. Moscow, Nauka Publ., 248 p. (In Russ.)
82. Retallack G.J. (1986а) Editors preface to special issue on Precambrian paleopedology. Precambrian Res., 32, 95-96.
83. Retallack G.J. (1986б) Reappraisal of a 2200 Ma-old paleosol from near Waterval Onder, South Africa. Precambrian Res., 32, 195-232. https://doi.org/10.1016/0301-9268(86)90007-0
84. Retallack G.J. (2005) Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 33(4), 333-336. https://doi.org/10.1130/G21263.1
85. Retallack G.J., Grandstaff D., Kimberley M. (1984) The promise and problems of Precambrian paleosols. Episodes, 7, 8-12. https://doi.org/10.18814/epiiugs/1984/v7i2/003
86. Riphean stratotype. Stratigraphy. Geochronology. (1983) (Ed. by B.M. Keller, N.M. Chumakov). Moscow, Nauka Publ., 184 p. (In Russ.)
87. Ronov A.B., Khlebnikova Z.V. (1961) Chemical composition of the prime clay genetic types. Geokhimiya, (6), 449-469. (In Russ.)
88. Rudnick R.L., Gao S. (2014) Composition of the Continental Crust. Treatise on Geochemistry. (Ed. by H.D. Holland, K.K. Turekian). Oxford, Elsevier, 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
89. Ruxton B.P. (1968) Measures of the Degree of Chemical Weathering of Rocks. J. Geol., 76, 518-527.
90. Semikhatov M.A., Chumakov N.M., Kuznetsov A.B. (2015) Isotope age of boundaries between the general stratigraphic subdivisions of the Upper Proterozoic (Riphean and Vendian) in Russia: the evolution of opinions and the current estimate. Stratigr. Geol. Correl., 23(6), 568-579 (translated from Stratigr. Geol. Korrel., 23(6), 16-27). https://doi.org/10.1134/S0869593815060088
91. Sheldon N.D., Retallack G.J., Tanaka S. (2002) Geochemical Climofunctions from North American Soils and Application to Paleosols across the Eocene-Oligocene Boundary in Oregon. J. Geol., 110, 687-696. https://doi.org/10.1086/342865
92. Shevelev A.I. (1997) Magnesite discovery distribution patterns and estimation basics. Dokt. geol. and min. sci. diss. Moscow, TsNIGRI, 45 p. (In Russ.)
93. Shirobokova T.I. (1992) Stratiform polymetallic and barite mineralization of the Urals. Sverdlovsk, UrO RAN, 137 p. (In Russ.)
94. Sinitsyn V.M. (1967) Paleoclimatology introduction. Leningrad, Nedra Publ., 232 p. (In Russ.)
95. Strakhov N.M. (1963) Diagenesis types and their evolution through Earth’s history. Moscow, Gosgeolizdat Publ., 535 p. (In Russ.)
96. Stratigraphic Code of Russia. (2019) (Ed. by A.I. Zhamoida). St.Petersburg, VSEGEI, 96 p. (In Russ.)
97. Sul’man A.M., Demchuk I.G. (1978) Clay minerals in Riphean sedimentary deposits of the Bashkir meganticlinorium. Precambrian strata of the Bashkir meganticlinorium in the Urals and their metallogeny. (Ed. by L.V. Anfimov, V.I. Kozlov). Sverdlovsk, UNTs AN SSSR, 16-24. (In Russ.)
98. Sul’man A.M., Demchuk I.G., Petrishcheva V.G. (1974) New data on the mineral composition of clay shales of the Bakal Formation in the Southern Urals. Tr. IGG UNTs AN SSSR, vyp. 122, 26-27. (In Russ.)
99. Taylor S.R., McLennan S.M. (1985) The Continental Crust: Its Composition and Evolution: an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford, Blackwell, 312 p.
100. Turgeon S., Brumsack H.-J. (2006) Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche basin of central Italy. Chem. Geol., 234, 321-339. https://doi.org/10.1016/j.chemgeo.2006.05.008
101. Van de Kamp P.C. (2016) Potassium Distribution and Metasomatism in Pelites and Schists: How and When, Relation to Postdepositional Events. J. Sed. Res., 86, 683-711. https://doi.org/10.2110/jsr.2016.44
102. White A.F., Blum A.E., Schultz M.S., Huntington T.G., Peters N.E., Stonestrom D. (2002) Chemical weathering of the Panola Granite: Solute and regolith elemental fluxes and the weathering rate of biotite. Water-Rock Interactions, Ore deposits and Environmental geochemistry: A tribute to David Crerar: Geol. Soc. Spec. Publ., (7), 37-59.
103. Yang J., Cawood P.A., Du Y., Feng B., Yan J. (2014) Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high- and low-paleolatitude sedimentary records. Geology, 42, 835-838. https://doi.org/10.1130/G35892.1
104. Yang J., Cawood P.A., Du Y., Li W., Yan J. (2016) Reconstructing Early Permian tropical climates from chemical weathering indices. Geol. Soc. Amer. Bull., 128, 739-751. https://doi.org/10.1130/B31371.1
105. Yasamanov N.A. (1985) Earth’s ancient climates. Leningrad, Gidrometeoizdat Publ., 294 p. (In Russ.)
106. Yudovich Ya.E., Ketris M.P. (2000) Fundamentals of lithochemistry. St.Petersburg, Nauka Publ., 479 p. (In Russ.)
107. Yudovich Ya.E., Ketris M.P., Rybina N.V. (2020) Phosphorous geochemistry. Syktyvkar, GI Komi NTs UrO RAN, 512 p. (In Russ.)
108. Zaitseva T.S., Gorokhov I.M., Ivanovskaya T.A., Semikhatov M.A., Kuznetsov A.B., Mel’nikov N.N., Arakelyants M.M., Yakovleva O.V. (2008) Mössbauer characteristics, mineralogy and isotopic age (Rb-Sr, K-Ar) of Upper Riphean glauconites from the Uk formation, the Southern Urals. Stratigr. Geol. Correl., 16(3), 227-247 (translated from Stratigr. Geol. Korrel., 16(3), 3-25). https://doi.org/10.1134/S0869593808030015
109. Zaitseva T.S., Kuznetsov A.B., Adamskaya E.V., Plotkina Y.V., Sergeeva N.D. (2022) The U-Th-Pb age of detrital zircons from oolitic limestones of the Uk formation: traces of the grenville provenance areas in the Late Riphean of the Southern Urals. Dokl. Earth Sci., 503(2), 143-149 (translated from Dokl. RAN. Nauki o Zemle, 503(2), 90-96). https://doi.org/10.1134/S1028334X22040195
110. Zaitseva T.S., Kuznetsov A.B., Gorokhov I.M., Konstantinova G.V., Gorozhanin V.M., Ivanovskaya T.A. (2019) The lower boundary of the Vendian in the Southern Urals as evidenced by the Rb–Sr age of glauconites of the Bakeevo formation. Stratigr. Geol. Correl., 27(5), 573-587 (translated from Stratigr. Geol. Korrel., 27(5), 82-96). https://doi.org/10.1134/S0869593819050083
111. Zhang L., Wang C., Li X., Cao K., Song Y., Hu B., Lu D., Wang Q., Du X., Cao S. (2016) A new paleoclimate classification for deep time. Palaeogeogr., Palaeoclimatol., Palaeoecol., 443, 98-106. https://doi.org/10.1016/j.palaeo.2015.11.041
Review
For citations:
Melnichuk O.Yu., Maslov A.V. Riphean stratotype mudrocks composition and some paleoclimate quantitative characteristics. LITHOSPHERE (Russia). 2025;25(4):725-747. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-4-725-747. EDN: VFXEJM