Preview

LITHOSPHERE (Russia)

Advanced search

Paleoclimate reconstructions in source area by using mud rocks geochemical composition: modern approach, possibilities and constrains

https://doi.org/10.24930/1681-9004-2025-25-4-701-724

EDN: VJCLKZ

Abstract

Research subject. Paleoclimate reconstructions in source area.

Aim. To identify the possibilities and constrains of using a number of geochemical characteristics of mud rocks (CIA, RW index, modules and modular diagrams, etc.) when reconstructing data on the near-surface humidity and mean annual temperatures (MAT) for catchment areas of the geological past.

Key points. The types of climate and paleoclimate classifications, features of paleoclimate reconstruction with a special emphasis on the geochemical composition of fine-grained rocks are considered. N.M. Chumakov's paleoclimate classification is put forward as the most objective. Geochemical criteria are given, according to which it’s possible to reconstruct individual parameters necessary for its application. Thus, it is possible to classify various strata as weathering products of source rocks in a humid, arid/semiarid climate not only using the modular diagrams of Ya.E. Yudovich and M.P. Ketris, but also when studying the titanium geochemistry. In addition, the equation recently proposed by K. Deng et al. allows one to reconstruct the MAT in the area of source rock erosion using the CIA values in a shallow marine and deltaic sediments. However, calculating the CIA index in rocks has a number of constrains, many of which can be overcome. The discussion is supported by several examples of the rational application of the integrated geochemical approach to reconstructing the climate characteristics for Upper Riphean and Upper Vendian strata that bearing red beds, Lower Vendian strata recording glacial and interglacial events, and Upper Devonian formation with a heterogeneous complex of source rock and facies.

Conclusions. It is possible to reconstruct various climate characteristics in paleocatchment area for certain strata using the geochemical characteristics of mud rocks only if they have been comprehensively studied and the researcher takes into account the multifactorial nature of the processes determining their composition.

About the Authors

O. Yu. Melnichuk
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Oleg Yu. Melnichuk

15 Academician Vonsovsky st., Ekaterinburg 620110



A. V. Maslov
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Andrey V. Maslov

15 Academician Vonsovsky st., Ekaterinburg 620110



L. V. Badida
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

Lyudmila V. Badida

15 Academician Vonsovsky st., Ekaterinburg 620110



References

1. Algeo T.J., Li C. (2020) Redox classification and calibration of redox thresholds in sedimentary systems. Geochim. Cosmochim. Acta, 287, 8-26. https://doi.org/10.1016/j.gca.2020.01.055

2. Alisov B.P. (1936) Geographical climate types. Meteorologiya i Gidrologiya, (6), 16-34. (In Russ.)

3. Alisov B.P., Poltaraus B.V. (1974) Climatology. 2nd ed. Moscow, MGU, 298 p. (In Russ.)

4. Anfimov L.V. (1997) Riphean sedimentary stata diagenesis in the Baskirian megaaticlinorium (South Urals). Ekaterinburg, UrO RAN, 290 p. (In Russ.)

5. Babechuk M.G., Widdowson M., Kamber B.S. (2014) Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol., 363, 56-75. https://doi.org/10.1016/j.chemgeo.2013.10.027

6. Belarus geology. (2001) (Ed. by A.S. Makhnach, R.G. Garetsky, A.V. Matveev). Minsk, IGN NAN Belarus, 815 p. (In Russ.)

7. Berg L.S. (1938) Cliamtology basics. 2nd ed. Leningrad, GUPI Narkomprosa RSFSR, 455 p. (In Russ.)

8. Boucot A.J., Shen X., Scotese C.R., Morley R.J. (2013) Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Concepts in Sedimentology and Paleontology, 11, 30. https://doi.org/10.2110/sepmcsp.11

9. Bracciali L., Marroni M., Pandolfi L., Rocchi S. (2007) Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): From source areas to configuration of margins. Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry. Geol. Soc. Amer. Spec. Pap., 420, 73-93. https://doi.org/10.1130/2006.2420(06)

10. Bradley R.S. (2015) Paleoclimatology. Reconstructing climates of the quaternary. 3rd ed. Oxford, Elsevier, Academic Press, 675 p. https://doi.org/10.1016/C2009-0-18310-1

11. Cho T., Ohta T. (2022) A robust chemical weathering index for sediments containing authigenic and biogenic materials. Palaeogeogr., Palaeoclimatol., Palaeoecol., 608, 111288. https://doi.org/10.1016/j.palaeo.2022.111288

12. Chumakov N.М. (2004) General review of the Upper Mesozoic climate and. Climate in the epochs of the major biospheric transformations. (Ed. by Yu.G. Leonov). Мoscow, Nauka Publ., 44-51. (In Russ.)

13. Climate in the epochs of major biospheric transformations. (2004) (Ed. by Yu.G. Leonov). Мoscow, Nauka Publ., 299 p. (In Russ.)

14. Condie K.C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol., 104(1-4), 1-37. https://doi.org/10.1016/0009-2541(93)90140-E

15. Condie K.C., Wronkiewicz D.J. (1990) The Cr/Th ratio in Precambrian pelites from the Kaapvaal craton as an index of craton evolution. Earth Planet. Sci. Lett., 97(3-4), 256-267. https://doi.org/10.1016/0012-821X(90)90046-Z

16. Deng K., Yang S., Guo Y. (2022) A global temperature control of silicate weathering intensity. Nat. Commun., 13(1), 1781. http://doi.org/10.1038/s41467-022-29415-0

17. Duzgoren-Aydin N.S., Aydin A., Malpas J. (2002) Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Eng. Geol., 63(1-2), 99-119. https://doi.org/10.1016/S0013-7952(01)00073-4

18. Fedo C.M., Nesbitt H.W., Young G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

19. Flohn H. (1950) Neue Anschauungen über die allgemeine Zirkulation der Atmosphäre und ihre klimatische Bedeutung. Erdkunde, (4), 141-162.

20. Floyd P.A., Leveridge B.E. (1987) Tectonic Environment of the Devonian Gramscatho Basin South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. J. Geol. Soc. London, 144, 531-542. http://doi.org/10.1144/gsjgs.144.4.0531

21. Geiger R. (1954) Klassifikation der Klimate nach W. Köppen. Landolt-Börnstein – Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie V. 3. Berlin, Springer, 603-607.

22. Gillet N.P., Kirchmeier-Young M., Ribes A., Shiogama H., Hegerl G.C., Knutti R., Gastineau G., John J.G., Li L., Nazarenko L., Rosenbloom N., Seland Ø., Wu T., Yukimoto S., Ziehn T. (2021) Constraining human contributions to observed warming since the pre-industrial period. Nat. Clim. Chang., 11, 207-212. https://doi.org/10.1038/s41558-020-00965-9

23. Goessling H.F., Rackow T., Jung T. (2024) Recent global temperature surge intensified by record-low planetary albedo. Science, 387(6729), 68-73. https://doi.org/10.1126/science.adq7280

24. Golbert A.V. (1987) Regional paleoclimatology basics. Мoscow, Nedra Publ., 222 p. (In Russ.)

25. Grazhdankin D.V., Maslov A.V., Krupenin M.T., Ronkin Yu.L. (2010) Sedimentary systems of the Sylvitsa Group (Upper Vendian of the Middle Urals). Ekaterinburg, UrO RAN, 280 p. (In Russ.)

26. Grigoriev A.A., Budyko M.I. (1959) Classification of the USSR climates. Izv. AN SSSR. Ser. Geographiya, (3), 3-19. (In Russ.)

27. Gwizd S., Fedo C., Grotzinger J., Banham S., Rivera-Hernández F., Stack K.M., Siebach K., Thorpe M., O’Connell-Cooper C., Stein N., Edgar L., Gupta S., Rubin D., Sumner D., Vasavada A.R. (2022) Sedimentological and geochemical perspectives on a marginal lake environment recorded in the Hartmann’s Valley and Karasburg members of the Murray formation, Gale crater, Mars. J. Geophys. Res. Planets, 127(8), e2022JE007280. https://doi.org/10.1029/2022JE007280

28. Khromov S.P., Petrosyants М.А. (2006) Meteorology and climatology. 7th ed. Мoscow, MGU; Nauka Publ., 582 p. (In Russ.)

29. Kislov A.V., Surkova G.V. (2023) Climatology. 4th ed. Мoscow, Infra-M Publ., 324 p. (In Russ.)

30. Köppen W. (1884) Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world). Meteorol., 1, 215-226 (translated and ed. by E. Volken, S. Brönnimann (2011) Meteorol., 20(3), 351-360). https://doi.org/10.1127/0941-2948/2011/105

31. Köppen W. (1923) Die Klimate der Erde: Grundriss der Klimakunde. Berlin, Leipzig, De Gruyter, 369 p. https://doi.org/10.1515/9783111491530

32. Kupfer E. (1954) Entwurf einer Klimakarte auf genetischer Grundlage. Zeitschr. Erdkundeunterr, (6), 5-13. Kuzmenkova О.F., Laptsevich А.G., Streltsova G.D., Мinenkova Т.M. (2018) Riphean and Vendian of the conjugation zone of the Orshanskya Depth and the Zlobin Saddle (Bykhovskaya parametric borehole). Belarus and adjacent territory geology problems. Proceedings of Int. sci. conf. (Ed. by A.A. Makhnach). Minsk, StrojMediaProekt Publ., 101-105.

33. Li Z.-X., Liu Y., Ernst R. (2023) A dynamic 2000–540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth Sci. Rev., 238, 104336. https://doi.org/10.1016/j.earscirev.2023.104336

34. Lipp A.G., Shorttle O., Syvret F., Roberts G.G. (2020) Major Element Composition of Sediments in Terms of Weathering and Provenance: Implications for Crustal Recycling. Geochem. Geophys. Geosyst., 21(6), e2019GC008758. https://doi.org/10.1038/s41467-020-18258-2

35. Maslov A.V. (1988) Lithology of the Upper Riphean in the Bashkirian meganticlinorium. Moscow, Nauka Publ., 133 p. (In Russ.)

36. Maslov A.V. (2020) Lithogeochemistry of clayey rocks and volcanic tuffs in the Vendian succession of the western slope of the Middle Urals: similarities and differences. Vestn. Sankt-Peterburgskogo un-ta. Nauki o Zemle, 65(3), 577-599. (In Russ.) https://doi.org/10.21638/spbu07.2020.309

37. Maslov A.V. (2022) Clastic Sources for the Upper Riphean Arkose Complex of the Southern Urals: Some Geochemical Constraints. Geochem. Int., 60, 1136-1152 (translated from Geokhimiya, 67(11), 1124-1141). https://doi.org/10.1134/S0016702922110076

38. Maslov A.V., Melnichuk O.Yu. (2023) Are There Restrictions Related to the Presence of Land Plants for Reconstructing Rivers of Different Categories? Lithol. Miner. Res., 58, 60-83 (translated from Litol. Polez. Iskop., (1), 69-95). https://doi.org/10.1134/S0024490223010054

39. Maslov A.V., Grazhdankin D.V., Goj Yu.Yu. (2013) Primitive paleosols in South Urals Zilmerdak Formation (structural and lithogeochemical aspects). Lithosphere (Russia), (2), 45-64. (In Russ.)

40. Maslov A.V., Krupenin M.T., Kiseleva D.V. (2011) Lithogeochemistry of the fine-grained siliciclastic rocks of the Vendian Serebryanka group of the Central Urals. Geochem. Int., 49(10), 974-1001 (translated from Geokhimiya, (10), 1032-1062).

41. Maslov A.V., Krupenin М.Т., Gareev E.Z. (2003) Lithological, Lithochemical, and Geochemical Indicators of Paleoclimate: Evidence from Riphean of the Southern Urals. Lithol. Miner. Res., 38, 427-446 (translated from Litol. Polez. Iskop., (5), 427-446). https://doi.org/10.1023/A:1025575120343

42. Maslov A.V., Melnichuk O.Yu., Kuznetsov A.B., Podkovyrov V.N. (2024) Lithogeochemistry of Upper Precambrian Terrigenous Rocks of Belarus: Communication 2. Provenance, Paleogeodynamics, Paleogeography, and Paleoclimate. Lithol. Miner. Res., 59, 479-503 (translated from Litol. Polez. Iskop., (5), 515-543). https://doi.org/10.1134/S002449022470069X

43. Maslov A.V., Ronkin Yu.L., Krupenin М.Т., Petrov G.А., Kornilova А.Yu., Lepikhina О.P., Popova О.Yu. (2006) Systematics of rare earth elements, Th, Hf, Sc, Co, Cr, and Ni in the vendian pelitic rocks of the Serebryanka and Sylvitsa groups from the western slope of the Central Urals: A tool for monitoring provenance composition. Geochem. Int., 44, 559-580 (translated from Geokhimiya, (6), 610-632). https://doi.org/10.1134/ S0016702906060036

44. McLennan S.M. (1993) Weathering and Global Denudation. J. Geol., 101(2), 295-303. https://doi.org/10.1086/648222

45. McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N. (1993) Geochemical Approaches to Sedimentation, Provenance and Tectonics. Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Amer. Spec. Pap., 285, 21-40. http://doi.org/10.1130/SPE284-p21

46. Melnichuk O.Yu. (2024) First destruction traces of the Upper Paleozoic accretionary orogene in the Middle Urals eastern slope. Tr. IGG UrO RAN, vyp. 168, 37-46. https://doi.org/10.24930/0371-7291-2024-168-37-46 (In Russ.)

47. Melnichuk O.Yu., Badida L.V. (2026) Catchment Areas Climate Reconstruction Attempt by the Example of Upper Frasnian Kodinka Formation in the Middle Urals. Russ. J. Earth. Sci. (In press). (In Russ.)

48. Melnichuk O.Yu., Maslov A.V. (2025а) Chemical Composition of Vendian Mudrocks (Middle Urals) and Some Quantitative Features of Paleoclimate. Lithol. Miner. Res., 60, 267-287. (translated from Litol. Polez. Iskop., (3), 273-295). https://doi.org/10.1134/S0024490225700063

49. Melnichuk O.Yu., Maslov A.V. (2025б) Riphean stratotype mudrocks composition and some paleoclimate quantitative characteristics. Lithosphere (Russia), 25(4), 725-747. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-4-725-747

50. Melnichuk O.Yu., Ryanskaya A.D. (2017) Specific composition features of the Kodinka Formation mudstones (Upper Devonian in the Middle Urals eastern slope. Lithosphere (Russia), 17(3), 71-86. (In Russ.)

51. Meunier A. (1980) Les mécanismes de l’altération des granites et le rôle des microsystèmes: étude des arènes du massif granitique de Parthenay (Deux-Sèvres). Memoir. Soc. Géol. France, 140, 1-80.

52. Meunier A., Caner L., Hubert F., El Albani A., Pret D. (2013) The weathering intensity scale (WIS): An alternative approach of the Chemical Index of Alteration (CIA). Amer. J. Sci., 313(2), 113-143. https://doi.org/10.2475/02.2013.03

53. Molén M.O. (2024) Geochemical proxies: Paleoclimate or paleoenvironment? Geosyst. Geoenviron., 3, 100238. https://doi.org/10.1016/j.geogeo.2023.100238

54. Neef E. (1956) Die Erde Klimazonen. Wandkarte 1 : 15 000 000. Gotha, 7 p.

55. Nesbitt H.W., Young G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715-717. https://doi.org/10.1038/299715a0

56. Nesbitt H.W., Young G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, 48(7), 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3

57. Nesbitt H.W., Fedo C.M., Young G.M. (1997) Quartz and Feldspar Stability, Steady and Non Steady State Weathering, and Petrogenesis of Siliciclastic Sands and Muds. J. Geol., 105(2), 173-192. https://doi.org/10.1086/515908

58. Paleoclimate reconstruction methods. (1985) (Ed. by A.A. Velichko). Мoscow, Nauka Publ., 197 p. (In Russ.) Paleoclimatology. (2021) (Ed. by G. Ramstein, A. Landais, N. Bouttes, P. Sepulchre, A. Govin). Cham, Springer, 485 p. https://doi.org/10.1007/978-3-030-24982-3

59. Panahi A., Young G.M., Rainbird R.H. (2000) Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta, 64(13), 2199-2220. https://doi.org/10.1016/S0016-7037(99)00420-2

60. Parker A. (1970) An Index of Weathering for Silicate Rocks. Geol. Mag., 107(6), 501-504. https://doi.org/10.1017/S0016756800058581

61. Paszkowski M., Budzyn B., Mazur S., Sláma J., Shumlyanskyy L., Srodon J., Dhuime B., Kedzior A., Liivamägi S., Pisarzowska A. (2019) Detrital zircon U–Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, Belarus. Precambrian Res., 331, 105352. https://doi.org/10.1016/j.precamres.2019.105352

62. Peel М.С., Finlayson B.L., McMahon T.A. (2007) Updated world map of the Koppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11(5), 1633-1644. https://doi.org/10.5194/hess-11-1633-2007

63. Plant Functional Types: Their Relevance to Ecosystem Properties and Global. (1997) (Ed. by T.M. Smith, H.H. Shugart, F.I. Woodward). Cambridge, Cambridge University Press, 369 p.

64. Rudnick R.L., Gao S. (2014) Composition of the continental crust. Treatise on Geochemistry. (Ed. by H.D. Holland, K.K. Turekian). 2nd ed. Oxford, Elsevier, 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

65. Sinitsyn V.M. (1980) Paleoclimatology introduction. 2nd ed. Leningrad, Nedra Publ., 248 p. (In Russ.)

66. Spicer R.A., Yang J., Spicer T.E.V., Farnsworth A. (2021) Woody dicot leaf traits as a palaeoclimate proxy: 100 years of development and application. Palaeogeogr., Palaeoclimatol., Palaeoecol., 562, 110138. https://doi.org/10.1016/j.palaeo.2020.110138

67. Strakhov N.M. (1960а) Diagenesis theory basics. V. 1. Diagenesis types and their Earth surface distribution. Moscow, AN SSSR, 212 p. (In Russ.)

68. Strakhov N.M. (1960б) Diagenesis theory basics. V. 2. Humid sediments consistent patterns of the composition and distribution. Moscow, AN SSSR, 574 p. (In Russ.)

69. Strakhov N.M. (1962) Diagenesis theory basics. V. 3. Arid sediments consistent patterns of the composition and distribution. Moscow, AN SSSR, 550 p. (In Russ.)

70. Tabor N.J., Myers T.S. (2015) Paleosols as Indicators of Paleoenvironment and Paleoclimate. Ann. Rev. Earth Planet. Sci., 43, 333-361. https://doi.org/10.1146/annurevearth-060614-105355

71. van de Kamp P.C. (2016) Potassium Distribution and Metasomatism In Pelites and Schists: How and When, Relation To Postdepositional Events. J. Sediment. Res., 86, 683-711. https://doi.org/10.2110/jsr.2010.081

72. White A.F., Blum A.E., Schultz M.S., Huntington T.G., Peters N.E., Stonestrom D. (2002) Chemical weathering of the Panola Granite: Solute and regolith elemental fluxes and the weathering rate of biotite. Water-Rock Interactions, Ore deposits and Environmental geochemistry: A tribute to David Crerar: Geol. Soc. Spec. Publ., (7), 37-59.

73. Yanin B.Т. (2009) Paleobiogeography. Moscow, Akademiya Publ., 256 p. (In Russ.)

74. Yapaskurt О.V. (2008) Genetical mineralogy and stadium analysis of the rock and ore forming processes. Moscow, Eslan Publ., 356 p. (In Russ.)

75. Yasamanov N.А. (1985) Earth`s ancient climates. Leningrad, Gidrometeoizdat Publ., 294 p. (In Russ.)

76. Young G.M., Williams G.E. (2020) Proterozoic Climates. Encyclopedia of Geology. 2nd ed. V. 5. Climates. (Ed. by S. Elias, D. Alderton). Amsterdam, Elsevier, 557-570. https://doi.org/10.1016/B978-0-12-409548-9.12540-0

77. Yu C., Zhang L., Hou M., Yang J., Zhong H., Wang C. (2023) Climate paleogeography knowledge graph and deep time paleoclimate classifications. Geosci. Front., 14, 101450. https://doi.org/10.1016/j.gsf.2022.101450

78. Yudovich Ya.E., Ketris M.P. (2000) Lithochemistry basics. St.Petersburg, Nauka Publ., 479 p. (In Russ.)

79. Yudovich Ya.E., Ketris M.P. (2011) Lithogenesis geochemical proxies (lithological geochemistry). Syktyvkar, Geoprint Publ., 742 p. (In Russ.)

80. Yudovich Ya.E., Ketris M.P., Rybina N.V. (2018) Titan geochemistry. Syktyvkar, IG Komi NTs UrO RAN, 432 p. (In Russ.)

81. Yudovich Ya.E., Ketris M.P., Rybina N.V. (2020) Phosphorus geochemistry. Syktyvkar, IG Komi NTs UrO RAN, 512 p. (In Russ.)

82. Zhang L., Wang C., Li X., Cao K., Song Y., Hu B., Lu D., Wang Q., Du X., Cao S. (2016) A new paleoclimate classification for deep time. Palaeogeogr., Palaeoclimatol., Palaeoecol., 443, 98-106. https://doi.org/10.1016/j.palaeo.2015.11.041


Review

For citations:


Melnichuk O.Yu., Maslov A.V., Badida L.V. Paleoclimate reconstructions in source area by using mud rocks geochemical composition: modern approach, possibilities and constrains. LITHOSPHERE (Russia). 2025;25(4):701-724. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-4-701-724. EDN: VJCLKZ

Views: 90


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)