Preview

LITHOSPHERE (Russia)

Advanced search

Application of geoacoustic emission and electromagnetic radiation in combination with standard geophysical research methods to identify geodynamic activity areas in ore boreholes

https://doi.org/10.24930/2500-302X-2025-25-3-644-655

EDN: CQCPZS

Abstract

Research subject. Borehole 1 of the Severo-Taratashsky site (Middle Urals) and borehole 2 of the Vostochno-Tarutinsky deposit (Southern Urals). The lithological section of borehole 1 is composed mainly of gneisses with thin interlayers of dolerites, quartzites, gabbro, and magnetite quartzites. The lithological section of borehole 2 is represented by diorite porphyrite, skarn, propylite, and metasomatites. Sulfide and magnetite mineralization with different contents of ore components is observed throughout the section.

Aim. Identification of geodynamic activity areas in rocks by measuring geo-acoustic emission signals and electromagnetic radiation in combination with standard methods of geophysical borehole surveying.

Methods. Calculation and analysis of Pearson correlation coefficients for parameters of geoacoustic emission, electromagnetic radiation, and parameters of a standard set of geophysical studies. Comparison of diagrams of measured parameters taking into account significant correlation coefficients and the lithological structure of the studied wells. Results. The correlation coefficients between the parameters of electromagnetic radiation and geoacoustic emission, apparent electrical resistance, self-polarization potentials, magnetic susceptibility, caliper measurements, and natural radioactivity of rocks were calculated. In boreholes 1 and 2, geodynamic activity areas were identified in mineralization intervals and along ore-host rock contacts. A qualitative assessment of the geodynamic activity of the boreholes was given

Conclusions. Geodynamic activity areas of rocks are manifested in the fields of geoacoustic emission and electromagnetic radiation in a wide range of frequencies. The use of logging of geoacoustic emission and electromagnetic radiation in combination with standard methods of geophysical borehole surveying allows not only lithological dissection of the borehole section, but also identification of areas of rock disturbance and fracturing.

About the Author

E. A. Bazhenova
Yu.P. Bulashevich Institute of Geophysics, UB RAS
Russian Federation

100 Amundsena st., Ekaterinburg 620016



References

1. Astrakhantsev Ju.G., Bazhenova E.A., Beloglazova N.A., Vdovin A.G., Glukhikh I.I., Ivanchenko V.S., Hachai O.A. (2018) Complex geophysical studies of rock massifs in natural occurrence. (Ed. О.А. Hachai). Ekaterinburg, UrO RAN, 105 p. ISBN 978-5-7691-2517-1 (In Russ.)

2. Auzin A.A., Akhmad H.M. (2019) Possibilities of borehole thermometry in solving hydrogeological problems. Vestn. Voronezh. Gos. Universiteta. Ser.: Geol., (1), 72-75. (In Russ.)

3. Beloglazova N.A., Troyanov A.K. (2003) Optimization of a Complex of Informative Parameters of Geoacoustic Noises in Solving Problems in Oil and Gas Wells. Proceedings of the XIII Session of the Russian Acoustic Society. Moscow, 57-60. (In Russ.)

4. Bespal’ko A.A. (2019) Physical principles and implementation of the electromagnetic emission method for monitoring and short-term forecasting of changes in the stress-strain state of rocks. Doct. tech. sci. diss. Tomsk, FGAOU VO NI TPU Publ., 395 p. (In Russ.)

5. Bespal’ko A.A., Yavorovich L.V., Fedotov P.I. (2005) Relationship between electromagnetic signal parameters and electrical characteristics of rocks under acoustic and quasi-static influences. Izv. Tomsk Politekhnich. Universiteta, 308(7), 18-23. (In Russ.)

6. Bitner A.K., Prokaten’ E.V. (2018) Methods of studying reservoir rocks and fluids: textbook. manual. Krasnoyarsk, SFU Publ., 224 p. ISBN 978-5-7638-3819-0. (In Russ.)

7. Demin V.M., Maibuk Z.-Yu. Ya., Lementueva R.A. (1998) On the role of the piezoelectric effect in mechanoelectric transformation in polymetallic ores. Fizika Zemli, (11), 50-55. (In Russ.)

8. D’yakonov B.P., Ulitin R.V. (1982) Earth tides and variations of physical characteristics of rocks. Dokl. Akad. Nauk SSSR, 264(2), 322-325. (In Russ.)

9. Ipatov A.I., Gorodnov A.V., Ipatov S.I., Mar’enko N.N., Petrov L.P., Skopintsev S.P. (2004) Study of amplitudefrequency spectra of acoustic and electromagnetic noise signals during fluid filtration in rocks. Geofizika, (2), 25-30. (In Russ.)

10. Kosarev I.B., Solov’ev S.P. (2011) Physical models of electromagnetic signal generation during deformation and destruction of low-porosity rocks. Dinamicheskie Protsessy v Geosferakh, (2), 165-176. (In Russ.)

11. Li D., Huang L., Zheng Y., Li Y., Wannamaker P., Moore J. (2022) Feasibility of source-free DAS logging for nextgeneration borehole imaging. Sci. Rep., 12(1), 11910.

12. Mari J.L., Delay F., Voisin C., Gaudiani P. (2023) Active and Passive acoustic logging applied to the detection of preferential flow in a sedimentary aquifer. Sci. Technol. Energy Transit., 78, 25.

13. Orekhov A.N., Amani M.M.M. (2019) Capabilities of geophysical methods for predicting reservoir fracturing. Izv. Tomsk Politekhn. Universiteta. Inzhiniring Georesursov, 330(6), 198-209. (In Russ.)

14. Perelygin V.T., Mashkin K.A., Ryskal’ O.E., Korotchenko A.G., Gainetdinov R.G., Romanov V.M., Glukhov V.L., Safonov P.A., Kamaltdinov A.F., Ognev A.N., Shabiev I.H. (2015) Hardware and methodological complexes for the study of ore, coal and hydrogeological wells. Karotazhnik, 9(255), 99-127. (In Russ.)

15. Pimonov A.G., Ivanov V.V. (1990) Simulation model of the process of crack formation in the centers of rock destruction. FTPRPI, (3), 34-37. (In Russ.)

16. Poltavtseva E.V., Vlasov Yu.A., Gavrilov V.A. (2013) Study of responses to tidal action in borehole geoacoustic measurement series. Vestnik Kamchatskoi Regional’noi Assotsiatsii Uchebno-Nauchnyi Tsentr. Ser.: Nauki o Zemle, 2(22), 178-183. (In Russ.)

17. Rader D. (1975) Acoustical logging of oil wells. J. Acoust. Soc. Amer., 57(S1), S29-S30.

18. Sadovskii M.A., Bolkhovitinov L.G., Pisarenko V.F. (1982) On the Discreteness Property of Rocks. Izv. AN SSSR. Fizika Zemli, (12), 3-18. (In Russ.)

19. Troyanov A.K., D’yakonov B.P., Martyshko P.S., Astrakhantsev Yu.G., Nachapkin N.I., Gavrilov V.A., Beloglazova N.A. (2011) Seismoacoustic emission and electromagnetic radiation of fractured rocks in wells. Doklady Earth Sciences, 436(1), 118-120. (In Russ.)

20. Troyanov A., Igolkina G.V., Astrakhantsev Ju.G., Bazhenova E.A. (2012a) Three-component geoacoustic logging for monitoring during the development of gas fields. Geologiya, Geofizika i Razrabotka Neftyanykh i Gazovykh Mestorozhdenii, 2, 53-58. (in Russ.)

21. Troyanov A.K., Martyshko P.S., Yurkov А.K., Astrakhantsev Y.G., Nachapkin N.I., Kozlova I.A., Bazhenova E.A., Vdovin A.G., D’yakonov B.P. (2012b) Identification of permeable zones based on the borehole observations of seismoacoustic emissions and helium concentrations. Doklady Earth Sciences, 445(1), 893-896. (In Russ.)

22. Vdovin A.G. (2019) Laboratory studies of electromagnetic radiation signals on samples with different magnetic susceptibility. Ural. Geofiz. Vestnik, 4(38), 4-9. (In Russ.)

23. Yagafarov A.K., Kleshchenko I.I., Novoselov D.V. (2013) Modern geophysical and hydrodynamic studies of oil and gas wells: study guide. Tyumen’, TyumGNGU Publ., 140 p. (In Russ.).


Review

For citations:


Bazhenova E.A. Application of geoacoustic emission and electromagnetic radiation in combination with standard geophysical research methods to identify geodynamic activity areas in ore boreholes. LITHOSPHERE (Russia). 2025;25(3):644-655. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-3-644-655. EDN: CQCPZS

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)