Preview

LITHOSPHERE (Russia)

Advanced search

First data on the carbon isotope composition of conodont elements from the Middle Permian (Kazanian Stage) of the Tchimbulat section (Vyatka Dislocations, Volga-Ural Anteclise)

https://doi.org/10.24930/2500-302X-2025-25-3-438-450

EDN: DQTPYJ

Abstract

Research subject. Carbon isotope composition of conodont elements of Middle Permian age from the section of the Nemda Formation in the Chimbulat quarry.

Aim. Paleoecological interpretation of data on the carbon isotope composition of conodont elements from Early Kazanian deposits of the Volga-Vyatska region.

Materials and Methods. Carbon isotope composition was studied in 11 conodont elements of the Stepanovites, Sweetina, and Kamagnathus genera from 9 samples. The samples characterize the Kamagnathus khalimbadzhae regional conodont zone.

Results. The average carbon isotopic composition of conodont elements in the studied samples was –27.3‰, which is lower than the average value for the Devonian-Carboniferous interval of the palaeotropical realm (–26.7‰) and similar to the isotopic composition of conodonts from biohermal and near-biohermal facies of the Middle Carboniferous of Pai-Khoi. Judging by the relatively light carbon isotopic composition, the Middle Permian Stepanovites–Sweetina group probably occupied the trophic position of primary consumers. The relation of the isotopic composition of conodonts and host carbonates allow us to reconstruct the low to moderate pelagic primary bioproductivity of the Early Kazanian basin in the Volga-Vyatka region. According to the obtained data, a negative trend in the change of carbon isotope composition of conodont elements in the Late DevonianMiddle Permian interval was noted. This trend coincides with the decrease in carbon dioxide content in the atmosphere. The δ13C of conodonts could be related to the atmospheric carbon dioxide content through the intensity of carbon isotope fractionation by phytoplankton.

Conclusions. The relatively low pelagic primary bioproductivity of the Early Kazanian marine basin in the Volga-Vyatka region was reconstructed. Conodonts of the Stepanovites–Sweetina group in the pelagic trophic network of the Kazanian basin occupied the position of primary consumers feeding on phytoplankton with a light carbon isotope composition. This light carbon isotope composition may have been caused by a relatively low phytoplankton growth rate and, indirectly, with a low atmospheric carbon dioxide content in the Early Kazanian time. The assumed dependence of δ13C of Prioniodinida conodonts on the atmospheric carbon dioxide content can be used for approximate estimation of carbon dioxide content variations for some stratigraphic intervals.

About the Author

A. V. Zhuravlev
N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS
Russian Federation

54 Pervomaiskaya st., Syktyvkar 167982



References

1. Balter V., Martin J.E., Tacail T., Suan G., Renaud S., Girard C. (2019) Calcium stable isotopes place Devonian conodonts as first level consumers. Geochem. Perspectives. Lett., 10, 36-39. https://doi.org/10.7185/geochemlet.1912

2. Biakov A.S. (2015) Biogeography of the Permian Marine Boreal Basins Based on Bivalves. Paleontol. J., 49(11), 1184-1192.

3. Briggs D.E.G., Clarkson E.N.K., Aldridge R. (1983) The conodont animal. Lethaia, 16, 1-14.

4. Caut S., Angulo E., Courchamp, F. (2009) Variation in discrimination factors (Δ15N and Δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Applied Ecology, 46(2), 443-453. https://doi.org/10.1111/j.1365-2664.2009.01620.x

5. Chernykh V.V., Silantiev V.V. (2004) Conodonts of the Kazanian Stage of the Middle Volga region and the problem of substantiation of the upper boundary of the Zapadnouralian Series of the Permian. Structure and status of the East European stratigraphic scale of the Permian system, improvement of the stage division of the upper section of the Permian system of the General stratigraphic scale. Reports of the All-Russian conference. Kazan’, KGU, 83-86. (In Russ.)

6. Du Y., Onoue T., Tomimatsu Y., Wu Q., Rigo M. (2023) Lower Jurassic conodonts from the Inuyama area of Japan: Implications for conodont extinction. Front. Ecol. Evol., 11, 1135789. https://doi.org/10.3389/fevo.2023.1135789

7. Foster G., Royer D., Lunt D. (2017) Future climate forcing potentially without precedent in the last 420 million years. Nature Communications, 8, 14845. https://doi.org/10.1038/ncomms14845

8. Joachimski M.M., Buggisch W. (2002) Conodont apatite δ18O signatures indicate climate cooling as a trigger of the Late Devonian mass extinction. Geology, 30(8), 711-714.

9. King A.L., Jenkins B.D., Wallace J.R., Liu Y., Wikfors G.H., Milke L.M., Meseck S.L. (2015) Effects of CO2 on growth rate, C:N:P, and fatty acid composition of seven marine phytoplankton species. Mar. Ecol. Prog. Ser., 537, 59-69. https://doi.org/10.3354/meps11458

10. Kotlyar G.V., Kossovaya O.L., Zhuravlev A.V. (2004) Interregional correlation of the main event boundaries in the Permian system. Tikhookean. Geolog., 23(4), 25-42. (In Russ.)

11. Kotlyar G.V., Shishlov S.B., Zhuravlev A.V., Kossovaya O.L. (2007). Sections of the Kazanian Stage in the Nemda River basin (Volga-Vyatka region). Upper Paleozoic of Russia: Stratigraphy and paleogeography. Proc. of the All-Russian Conf. Kazan’, KGU, 162-170. (In Russ.)

12. Kuleshov V.N., Sedaeva K.M. (2009) Geochemistry of isotopes (δ13C and δ18O) and depositional environment of the upper Kazanian carbonate sediments in the Volga-Vyatka interfluve. Lithol. Miner. Resour., (44), 465-481 (translated from Litologiya i Polez. Iskopaemye, (5), 508-526). https://doi.org/10.1134/S0024490209050058

13. Kürschner W., Becker R.T., Buhl D., Veizer J. (1992) Strontium isotopes in conodonts: Devonian–Carboniferous transition, the northern Rhenish Slate Mountains, Germany. Ann. Soc. géol. Belg., 115(2), 595-621.

14. Luz B., Kolodny Y., Kovach J. (1984) Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. Earth Planet. Sci. Lett., 69(2), 255-262. https://doi.org/10.1016/0012-821X(84)90185-7

15. Nicholas C., Murray J., Goodhue R., Ditchfield P. (2004) Nitrogen and carbon isotopes in conodonts: Evidence of trophic levels and nutrient flux in Palaeozoic oceans. The Palaeontological Association 48th Annual Meeting, 17th–20th December 2004, University of Lille, Abstracts, 126-127.

16. Nurgalieva N.G., Silantiev V.V., Fakhrutdinov E.I., Gareev B.I., Batalin G.A. (2016) The lower Kazanian rocks as shallow marine facies (South-Eastern Tatarstan) on geochemistry data. ARPN J. Eng. Appl. Sci., 11(23), 13462-13471.

17. Over D.J., Grossman E.L. (1992) Carbon isotope analysis of conodont organic material – procedure and preliminary results. Geol. Soc. Amer., Abstracts with Programs, (24), A214.

18. Popp B.N., Hanson K.L., Dore J.E., Bidigare R.R., Laws E.A., Wakeham S.G. (1999) Controls on the Carbon Isotopic Composition of Phytoplankton. Reconstructing Ocean History (Ed. by F. Abrantes, A.C. Mix). Boston, MA, Springer, 381-398. https://doi.org/10.1007/978-1-4615-4197-4_21

19. Roche R.C., Heenan A., Taylor B.M., Schwarz J.N., Fox M.D., Southworth L.K., Williams G.J., Turner J.R. (2022) Linking variation in planktonic primary production to coral reef fish growth and condition. Royal Soc. Open Sci., 9(8), 201012. https://doi.org/10.1098/rsos.201012

20. Scotese C.R. (2016) PALEOMAP PaleoAtlas for GPlates and the PaleoDataPlotter program. Geol. Soc. Amer., Abstracts with Programs, 48(5), 24-11. https://doi.org/10.1130/abs/2016NC-275387

21. Terrill D.F., Jarochowska E., Henderson C.M., Shirley B., Bremer O. (2022) Sr/Ca and Ba/Ca ratios support trophic partitioning within a Silurian conodont community from Gotland, Sweden. Paleobiology, 48(4), 601-621. https://doi.org/10.1017/pab.2022.9

22. Wei H., Geng Z., Zhang X, (2020) Guadalupian (Middle Permian) δ13Corg changes in the Lower Yangtze, South China. Acta Geochim., 39, 988-1001. https://doi.org/10.1007/s11631-020-00417-3

23. Zhuravlev A.V. (2005) Conodont associations of the Nemda Formation (Kazanian Stage, Volga-Vyatka region). Region. Geologiya i Metallogeniya, (23), 69-73. (In Russ.)

24. Zhuravlev A.V. (2020) Trophic position of some Late Devonian-Carboniferous (Mississippian) conodonts revealed on carbon organic matter isotope signatures: A case study of the East European basin. Geodiversitas, 42(24), 443-453. https://doi.org/10.5252/geodiversitas2020v42a24

25. Zhuravlev A.V. (2022) Numerical modelling of primary bioproductivity of the Palaeozoic pelagic ecosystems. Vestn. geonauk, (8), 37-42. https://doi.org/10.19110/geov.2022.8.4 (In Russ.)

26. Zhuravlev A.V. (2023) Carbon isotope study of conodont elements: Applications and limitations. Marine Micropaleontology, 178, 102200. https://doi.org/10.1016/j.marmicro.2022.102200

27. Zhuravlev A.V. (2023) Carbon isotopic composition of the Early Famennian conodonts and host carbonates of the Izma Formation (South Timan). Neftegazovaya Geologiya. Teoriya i Praktika, 18(3), https://doi.org/10.17353/2070-5379/35_2023 (In Russ.)

28. Zhuravlev A.V., Kotlyar G.V., Shishlov S.B. (2006) Paleobiogeographical and biostratigraphical analysis of the Kazanian (Middle Permian) conodonts of the east Russian Platform – preliminary results. Permophiles. (48), 15-20.

29. Zhuravlev A.V., Erofeevsky A.V., Gruzdev D.A., Plotitsyn A.N. (2023) Carbon and oxygen isotopic composition of the lower part of the Tchaika Reef (Moscovian, NW Pai-Khoi). Kazan Golovkinsky Meeting, 47. http://doi.org/10.13140/RG.2.2.20618.03529.


Review

For citations:


Zhuravlev A.V. First data on the carbon isotope composition of conodont elements from the Middle Permian (Kazanian Stage) of the Tchimbulat section (Vyatka Dislocations, Volga-Ural Anteclise). LITHOSPHERE (Russia). 2025;25(3):438-450. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-3-438-450. EDN: DQTPYJ

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)