Preview

LITHOSPHERE (Russia)

Advanced search

Distribution features of carbon isotopes in carbonates on the example of the Sartiu Formation (Lower Carboniferous, Vorkuta Uplift)

https://doi.org/10.24930/2500-302X-2025-25-3-398-418

EDN: DJVLTP

Abstract

Research subject. The carbon and oxygen isotope composition of rock carbonates and brachiopod shells in the section of the upper part of the Sartiu Formation (Mississippian, Vorkuta uplift).

Aim. Comparative evaluation of isotopic signal preservation in brachiopod shells and host rock on the example of strongly secondary altered sediments.

Methods. Data on foraminifera, conodonts, and brachiopods formed the stratigraphic framework. Carbon and oxygen isotope analyses of carbonates of brachiopod shells and host rock, accompanied by screening tests, were determined for 76 samples from 35 levels within the upper part of the Serpukhovian Stage. Data on carbonate recrystallisation, organic carbon content, carbon-oxygen isotope ratio, cathodoluminescence, and taxonomic affiliation of brachiopods were used for screening.

Results. The data on carbon isotope composition showed significant differences in isotopic signals in brachiopod shells and in the host rock. The lower part of the section (approximately 4.3 m) is characterized by a heavying of the carbon isotopic composition of the shell material from 2.0 to 4.1‰. Higher up the section (next 2.5 m), a sharp increase in δ13C up to 7.3‰ is observed (sample with Davidsonina carbonaria) followed by a decrease to 3.4‰ and then a scatter of values from 1.2 to 6‰ in the uppermost part. At the same time, the carbon isotope composition of limestones shows rather stable values along the entire section (from –0.2 to 2.6‰, mean value 1.0‰), showing a slight negative trend towards the upper part. According to the screening tests, all limestone samples show a highly altered signal by secondary processes; however, brachiopod shell carbonate is assumed to have a near-primary isotopic composition. At the same time, the isotopic composition of brachiopod shells strongly depends on taxonomic affiliation. In representatives of the Davidsonina genus, a significant (by 4–6‰) heavying of the carbon isotopic composition was noted. The average δ18O values of limestones are 21.3‰ SMOW (corresponding to –9.3‰ PDB) and brachiopod shells 22.2‰ (corresponding to –8.4‰ PDB), which rules out the primary nature of oxygen isotopic composition.

Conclusions. The studied material showed good preservation of the isotopic signal in brachiopod shells even in the case of significant recrystallisation of the host carbonates. The significant vital effect characteristic of representatives of the Davidsonina genus makes it difficult to use isotopic data obtained from these brachiopod shells for the purposes of isotopic stratigraphy. For correct isotopestratigraphic interpretation of variations in carbon isotope composition in sections, taxonomically homogeneous samples within at least one genus should be studied.

About the Authors

A. V. Erofeevsky
N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS
Russian Federation

54 Pervomaiskaya st., Syktyvkar, 167982



A. N. Plotitsyn
N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS
Russian Federation

54 Pervomaiskaya st., Syktyvkar, 167982



A. V. Zhuravlev
N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS
Russian Federation

54 Pervomaiskaya st., Syktyvkar, 167982



Ya. A. Vevel
N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS
Russian Federation

54 Pervomaiskaya st., Syktyvkar, 167982



R. M. Ivanova
A.N. Zavaritsky Institute of Geology and Geochemistry, UB RAS
Russian Federation

15 Academician Vonsovsky st., Ekaterinburg, 620110



References

1. Al-Assam I., Veizer J. (1982) Chemical Stabilization of Low-Mg Calcite: An Example of Brachiopods. SEPM J. Sediment. Res., 52, 1101-1109.

2. Al-Husseini M., Ruebsam W. (2020) Ch. 2. Interpreting Phanerozoic δ13C patterns as periodic glacio-eustatic sequences. Stratigraphy and Timescales 5. Cambridge, Academic Press, 41-105. https://doi.org/10.1016/bs.sats.2020.08.005

3. Angiolini L., Stephenson M., Leng M. J., Jadoul F., Millward D., Aldridge A., Andrews J., Chenery S., Williams G. (2011) Heterogeneity, cyclicity and diagenesis in a Mississippian brachiopod shell of palaeoequatorial Britain. Terra Nova, 24(1), 16-26.

4. Armendariz M., Rosales I., Quesada C. (2008) Oxygen isotope and Mg/Ca composition of Late Visean (Mississippian) brachiopod shells from SW Iberia: Palaeoclimatic and palaeogeographic implications in northern Gondwana. Palaeogeogr., Palaeoclimatol., Palaeoecol., 268(1-2), 65-79.

5. Barbin V. (2000) Cathodoluminescence of Carbonate Shells: Biochemical vs Diagenetic Process. Cathodoluminescence in Geosciences. Berlin, Heidelberg, Springer, 303-329. https://doi.org/10.1007/978-3-662-04086-7_12

6. Barbin V., Gaspard D. (1995) Cathodoluminescence of recent articulate brachiopod shells. Implications for growth stages and diagenesis evaluation. Geobios, (18), 39-45.

7. Bogush O.I., Ivanova R.M., Luchinina V.A. (1990) Calcareous algae of the Upper Famenian and Lower Carboniferous of the Urals and Siberia. Novosibirsk, Nauka Publ., sib. otd., 160 p. (In Russ.)

8. Brand U. (1989) Biogeochemistry of Late Paleozoic North American brachiopods and secular variation of seawater composition. Biogeochemistry, 7(3), 159-193.

9. Brand U., Legrand-Blain M. (1993) Paleoecology and biogeochemistry of brachiopods from the Devonian – Car- boniferous boundary interval of the Griotte Formation, La Serre, Montagne Noire, France. Ann. Soc. Geol. Belg., (115), 497-505.

10. Brand U., Jiang G., Azmy K., Bishop J., Montañez I.P. (2012) Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow Canyon, Nevada, U.S.A. 1. Brachiopod and whole rock comparison. Chem. Geol., 308-309, 26-39. https://doi.org/10.1016/j.chemgeo.2012.03.017.

11. Brand U., Logan A., Bitner M., Griesshaber E., Azmy K., Buhl D. (2011) What is the ideal proxy of Paleozoic seawater chemistry? Memoirs Assoc. Australas. Palaeontol., (41), 9-24.

12. Buening N. (2001) Brachiopod Shells: Recorders of the Present and Keys to the Past. Paleontol. Soc. Pap., 7, 117-144. https://doi.org/10.1017/S1089332600000930

13. Carter J., Johnson J., Gourvennec R., Hong-fei H. (1994) A revised classification of the spiriferid brachiopods. Annals of the Carnegie Museum, 63(4), 327-374.

14. Chen J., Montañez I.P., Qi Y., Wang X., Wang Q., Lin W. (2016) Coupled sedimentary and δ13C records of late Mississippian platform-to-slope successions from South China: Insight into δ13C chemostratigraphy. Palaeogeogr., Palaeoclimatol., Palaeoecol., 448, 162-178.

15. Czerniakowski L., Lohmann K., Wilson J. (1984) Closedsystem marine burial diagenesis: isotopic data from the Austin Chalk and its components. Sedimentology, 31(6), 863-877. https://doi.org/10.1111/j.1365-3091.1984.tb00892.x

16. Dmitrieva E.V., Ershova G.I., Librovich V.L., Nekrasova V.I., Oreshnikova E.I. (1968) Atlas of textures and structures of sedimentary rocks. Pt 2. Carbonate rocks. Moscow, Nedra Publ., 700 p. (In Russ.)

17. Erlanger O.A. (1987) Microstructure of the shell wall of spiriferids of the genus Davidsonina. Paleontol. J., (1), 124-128. (In Russ.)

18. Garbelli C., Angiolini L., Brand U., Jadoul F. (2014) Brachiopod fabric, classes and biogeochemistry: implications for the reconstruction and interpretation of seawater carbon-isotope curves and records. Chem. Geol., 371, 60-67.

19. Grossman E.L., Zhang C., Yancey T.E. (1991) Stable-isotope stratigraphy of brachiopods from Pennsylvanian shales in Texas. Geol. Soc. Amer. Bull., 103, 953-965.

20. Grossman E.L., Mii H.S., Zhang C.L., Yancey T.E. (1996) Chemical variation in Pennsylvanian brachiopod shells Diagenetic, taxonomic, microstructural, and seasonal effects. J. Sediment. Res., 66(5) (Pt A), 1011-1022.

21. Gröcke D.R. (2020) Ch. 1. Carbon isotope stratigraphy: Principles and applications. Stratigraphy and Timescales 5. Cambridge, Academic Press, 1-40. https://doi.org/10.1016/bs.sats.2020.08.002

22. Gruzdev D.A. (2021) Late Devonian-Early Carboniferous isolated carbonate platforms of the North of the Urals and Pay-Khoy. Vestnik Geonauk, 10, 3-15. (In Russ.)

23. Hammer Ø., Harper D.A.T., Ryan P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

24. Harris A.G., Sweet, W.C. (1989) Mechanical and chemical techniques for separating microfossils from rock. Sediment and residue matrix. Paleotechniques (Eds R.M. Feldmann, R.E. Chapman, J.T. Hannibal). (Paleontol. Soc. Spec. Publ., 4, 70-86).

25. Hayes J.M., Strauss H., Kaufman A.J. (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol., 161, 103-125. https://doi.org/10.1016/S0009-2541(99)00083-2

26. Huck S., Wohlwend S., Coimbra R., Christ N., Weissert H. (2017) Disentangling shallow water bulk carbonate carbon isotope archives with evidence for multi stage diagenesis: An in depth component specific petrographic and geochemical study from Oman (mid Cretaceous). Depos. Record, 3(2), 233-257. https://doi.org/10.1002/dep2.35

27. Immenhauser A., Della Porta G., Kenter J.A.M., Bahamonde J.R. (2003) An alternative model for positive shifts in shallow marine carbonate δ13C and δ18O. Sedimentology, 50, 953-959. https://doi.org/10.1046/j.1365-3091.2003.00590.x

28. Ivanova E.A. (1971) Introduction to the study of spiriferidae. Trudy PIN, 13, 105. Moscow, Nauka Publ. (In Russ.)

29. Ivanova R.M., Stepanova T.I. (2021) Algoflora and microfacies of the Lower Carboniferous of the Urals and adjacent territories. Ekaterinburg, RIO UrO RAN Publ., 264 p. (In Russ.)

30. Jenkins T.B.H., Crane D.T., Mory A.J. (1993) Conodont biostratigraphy of the Visean Series in eastern Australia. Alcheringa. Australas. J. Palaeontol., 17(3), 211-283. 10.1080/03115519308619605

31. Jones G.L. (1992) Irish Carboniferous conodonts record maturation levels and the influence of tectonisn, igneous activity and mineralization. Terra Nova, 4(4), 238-244.

32. Jope H.M. (1965) Composition of brachiopod shell. Treatise on Invertebrate Paleontology. Pt H, Brachiopoda. Geological Society of America & University of Kansas Press. N. Y. & Lawrence. V. 1, 156-164.

33. Kalashnikov N.V. (1974) Early Carboniferous brachiopods of the Pechora Urals. Leningrad, Nauka Publ., 220 p. (In Russ.)

34. Kalashnikov N.V. (1963) On the genus Davidsonina from the Carboniferous of the Northern Urals. Paleontol. J., (2), 43-53. (In Russ.)

35. Killingley J.S. (1983) Effects of diagenetic recrystallization on 18O/16O values of deep-sea sediments. Nature, 301(5901), 594-597.

36. Lee X., Wan G. (2000) No vital effect on δ18O and δ13C values of fossil brachiopod shells. Middle Devonian of China. Geochim. Cosmochim. Acta, 64(15), 2649-2664.

37. Lohmann K.C. (1988) Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. Paleokarst. Berlin, Springer, 58-80.

38. Lowenstam H.A. (1961) Mineralogy, 18O/16O ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans. J. Geol., 69, 241-260.

39. McConnaughey T.A., Burdett J., Whelan J.F., Paull C.K. (1997) Carbon isotopes in biological carbonates: Respiration and photosynthesis. Geochim. Cosmochim. Acta, 61(3), 61l-622.

40. Mii H., Grossman E. (1994) Late Pennsylvanian seasonality reflected in the 18O and elemental composition of a brachiopod shell. Geology, 22, 661-664.

41. Mii H., Grossman E.L., Yancey T.E. (1997) Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen – global change or diagenetic artifacts. Geology, 25, 227-230.

42. Mii H., Grossman E.L., Yancey T.E. (1999) Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geol. Soc. Amer. Bull., 111(7), 960-973. https://doi.org/10.1130/0016-7606(1999)111%3C0960:CISONA%3E2.3.CO;2

43. Mii H.S., Grossman E.L., Yancey T.E., Chuvashov B., Egorov A. (2001) Isotopic records of brachiopod shells from the Russian Platform evidence for the onset of mid Carboniferous glaciation. Chem. Geol., 175(1-2), 133-147.

44. Pagel M., Barbin V., Blanc P., Ohnenstetter D. (2000) Cathodoluminescence in Geosciences: An Introduction. Cathodoluminescence in Geosciences. Berlin, Heidelberg, Springer, 1-21. https://doi.org/10.1007/978-3-662-04086-7_1

45. Poletaev V.I. (2018) Atlas of Carboniferous spiriferids of Eastern Europe. Kiev, National Academy of Sciences of Ukraine, Institute of Geological Sciences, 408 p. (In Russ.)

46. Popp B.N., Anderson T.F., Sandberg P.A. (1986) Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. GSA. Bull., 97, 1262-1269.

47. Qie W., Zhang X.H., Du Y.S., Zhang Y. (2011) Lower Carboniferous carbon isotope stratigraphy in South China: Implications for the Late Paleozoic glaciation. Science China Earth Sciences, 54, 84-92. https://doi.org/10.1007/s11430-010-4062-4

48. Rush P.F., Chafetz H.S. (1990) Fabric-retentive, non-luminescent brachiopods as indicators of original δ13C and δ18O composition: A test. J. Sediment. Petrol., 60, 968-981.

49. Saltzman M.R. (2002) Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian–lower Osagean), western United States: Implications for seawater chemistry and glaciation. Geol. Soc. Amer. Bull., 114, 96-108.

50. Saltzman M.R., Groessens E., Zhuravlev A. (2004) Carbon cycle models based on extreme changes in δ13C: An example from the Lower Mississippian. Palaeogeogr., Palaeoclimatol., Palaeoecol., 213, 359-377. https://doi.org/10.1016/S0031-0182(04)00389-X

51. Saltzman M.R., Thomas E. (2012) Carbon isotope stratigraphy. The Geologic Time Scale, 207-232. https://doi.org/10.1016/B978-0-444-59425-9.00011-1

52. Samtleben C., Munnecke A., Bickert T., Pätzold J. (2001) Shell succession, assemblage and species dependent effects on C/O-isotopic composition of brachiopods – Examples from the Silurian of Gotland. Chem. Geol., 175, 61-107.

53. Scholle P.A., Arthur M.A. (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. Amer. Assoc. Petrol. Geol. Bull., 64, 67-87.

54. Shishkin M.A., Malykh O.N., Popov P.E., Kolesnik L.S. (2013) State geological map of the Russian Federation at a scale of 1:200 000 sheet Q-41-V, VI (second edition). Moskow, MF VSEGEI, Ministry of Natural Resources of the Russian Federation, Mireko. (In Russ.)

55. Stratigraphic schemes of the Urals (Precambrian, Palaeozoic). (1993) Mezhved. Strat. Committee of Russia. Ekaterinburg, IGG UrO RAN, Uralgeolcom, 151 sh. (In Russ.)

56. Timonin N.I. (1998) Pechora plate: history of geological development in the Phanerozoic. Ekaterinburg, UrO RAN Publ., 238 p. (In Russ.)

57. Tomašových A., Farkaš J. (2005) Cathodoluminescence of Late Triassic terebratulid brachiopods: implications for growth patterns. Palaeogeogr., Palaeoclimatol., Palaeoecol., 216(3-4), 215-233. https://doi.org/10.1016/j.palaeo.2004.11.010

58. Van Geldern R., Joachimski M.M., Day J., Jansen U., Alvarez F., Yolkin E.A., Ma X.P. (2006) Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Palaeogeogr., Palaeoclimatol., Palaeoecol., 240(1-2), 47-67.

59. Veizer J., Ala D., Azmy K., Bruckschen P., Buhl D., Bruhn F., Carden G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek F., Podlaha O.G., Strauss H. (1999) Sr-87/Sr-86, delta C-13 and delta O-18 evolution of Phanerozoic seawater. Chem. Geol., 161(1-3), 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9

60. Vinogradov V.I. (2005) Advantages and limitations of the isotopic methods in reconstructing sedimentational environments. Biosphere-ecosystem-biota in the history of the Earth. Paleobiogeographic aspects. To the Centenary of Academician V.V. Menner. (Trudy Geol. Instituta, (516), 433-466). (In Russ.)

61. Wefer G., Berger W.H. (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol., 100, 207-248.

62. Yanishevskii M.E. (1926) Materials to the knowledge of the Palaeozoic fauna of Novaya Zemlya. Trudy Geol. i Mineral. Muzeya Akademii Nauk, 5(4), 73-116. (In Russ.)

63. Yudin V.V. (1994) Orogeny of the North of the Urals and Pai-Khoy. Ekaterinburg, UIF “Nauka”, 284 p. (In Russ.)

64. Zhuravlev A.V. (2003) Conodonts of the Upper DevonianLower Carboniferous of north-eastern European Russia. Saint-Petersburg, VSEGEI Publ., 85 p. (In Russ.)

65. Zhuravlev A.V. (2017) Estimation of Palaeozoic sediments thermal maturity of Northern Pay-Khoy parautochthone on the basis of conodont colour alteration indexes. Lithosphere (Russia), (1), 44-52. (In Russ.)

66. Zhuravlev A.V., Plotitsyn A.N., Gruzdev D.A., Smoleva I.V. (2020) Ch. 9. Carbon isotope stratigraphy of the Tournaisian (Lower Mississippian) successions of NE Europe. Carbon Isotope Stratigraphy. Stratigraphy and Timescales 5. Cambridge, Academic Press, 467-528.

67. Zhuravlev A.V., Vevel Y.A., Gruzdev D.A., Erofeevsky A.V. (2023) Late Mississippian (early Serpukhovian) carbon isotope record of northern Laurussia: A proposal for the Viséan. Serpukhovian boundary. Revista Mexicana de Ciencias Geológicas, 40(1), 35-43.


Review

For citations:


Erofeevsky A.V., Plotitsyn A.N., Zhuravlev A.V., Vevel Ya.A., Ivanova R.M. Distribution features of carbon isotopes in carbonates on the example of the Sartiu Formation (Lower Carboniferous, Vorkuta Uplift). LITHOSPHERE (Russia). 2025;25(3):398-418. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-3-398-418. EDN: DJVLTP

Views: 61


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)