Petrographic features and provenance reconstruction of the Lower Riphean sandstones of the Mukun Group of the south-eastern Anabar shield
https://doi.org/10.24930/2500-302X-2025-25-3-373-397
EDN: DJMCOG
Abstract
Research subject. Lower Riphean terrigenous rocks of the Mukun Group of the East Anabar basin.
Aim. Reconstruction of provenance, identification of petrographic features, and restoration of sedimentation environments of these terrigenousrocks.
Materials and methods. The upper part of the Mukun Group section located in the lower reaches of the Bolshaya Kuonamka River (southeast of the Anabar Shield) was studied, as well as a set of Lower Riphean sandstone samples of the same level. Reconstruction of provenance and formation environments of terrigenous rocks was based on U-Pb dating of detrital zircons, as well as field observations and study of the mineral composition of these rocks using petrographic, X-ray phase and X-ray spectral analyses.
Results. The studied sandstones are characterized by a bimodal granulometric composition (sand-siltstone), dominated by angular grains of potassium feldspar with intense secondary alterations, as well as medium and well-rounded grains of quartz and zircon. The U-Pb dating of detrital zircon (69 grains) showed the presence of several different-aged provenances, represented by igneous and metamorphic rocks, the age of which corresponds to the main peaks of the dating distribution spectrum: 1965±5, 2095 ± 14, 2750 ± 7, and 2891 ± 9 Ma (weighted average).
Conclusions. The deposition of Lower Riphean terrigenous rocks of the Mukun Group of the East Anabar Basin occurred in a shallow, calm environment during the erosion of a stable continental block of local origin. The most representative (more than 50%) is the age cluster of detrital zircon ~1965 Ma, which reflects the widespread occurrence of Proterozoic regional granulite metamorphism rocks on the Anabar Shield. In addition to metamorphosed Archean-Proterozoic rocks, the following igneous complexes might have been the source of zircon: Archean Anabar enderbite-charnockite-migmatite and Proterozoic Magan alaskite-leucogranite-migmatite together with Billyakh granodiorite-granitegranosyenite. The absence of detrital zircon younger than 1890 Ma in the studied sandstone indicates different provinces for the West and East Anabar sedimentation basins.
About the Authors
G. O. KarpinchikRussian Federation
74, Sredny av., St. Petersburg 199106
7/9 University emb., St. Petersburg 199034
A. D. Savelyev
Russian Federation
74, Sredny av., St. Petersburg 199106
7/9 University emb., St. Petersburg 199034
E. E. Sereda
Russian Federation
74, Sredny av., St. Petersburg 199106
References
1. Cawood P.A., Hawkesworth C.J., Dhuime B. (2012) Detrital zircon record and tectonic setting. Geology, 40(10), 875- 878. https://doi.org/10.1130/G32945.1
2. Corfu F., Hanchar J.M., Hoskin P.-W.O., Kinny P. (2003) Atlas of zircon textures. Reviews in Mineral. Geochem., 53(1), 469-500. https://doi.org/10.2113/0530469
3. Dickinson W.R. (1985) Provenance of arenites. (Ed. by G.G. Zuffa). NATO ASI Series, Series C, Mathematical and Physical Sciences, 148, 333-361.
4. Dukhanin S.F., Erlikh E. (1967) State Geological Map of the USSR. An explanatory note. Anabar series, sheets R-49-XVII, XVIII. Moscow, Nedra Publ., 47 p. (In Russ.)
5. Ernst R.E., Buchan K.L., Hamilton M.A., Okrugin A.V., Tomshin M. (2000) Integrated Paleomagnetism and U‐Pb Geochronology of Mafic Dikes of the Eastern Anabar Shield Region, Siberia: Implications for Mesoproterozoic Paleolatitude of Siberia and Comparison with Laurentia. J. Geology, 108, 381-401. 10.1086/314413.
6. Ernst R.E., Hamilton M.A., Söderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S., Bleeker W., LeCheminant A.N., Buchan K.L., Chamberlain K.R., Didenko A.N. (2016) Southern Siberia and northern Laurentia: neighbours for a quarter of Earth’s history. Nature Geosci., 9(6), 464-469.
7. Gehrels G. (2012) Detrital zircon U-Pb geochronology: Current methods and new opportunities. Tectonics of Sedimentary Basins: Recent Advances, (2), 47-62. https://doi.org/10.1002/9781444347166.ch2
8. Gorokhov I.M., Kuznetsov A.B., Semikhatov M.A., Vasilyeva I.M., Rizvanova N.G., Lipenkov G.V., Dubinina E.O. (2019) Early riphean Bbillyakh Ggroup of the Anabar Uplift, Northern Siberia: C-O isotope geochemistry and Pb-Pb age of dolomites. Stratigraphyia. Geol. Correlatsiya, 27(5), 19-35. (In Russ.)
9. Gorokhov I.M., Semikhatov M.A., Drubetskoy E.R., Ivanovskaya T.A., Kutyavin E.P., Melnikov N.N., Turchenko T.L., Tsipursky S.I., Yakovleva O.V. (1991) Rb-Sr and K-Ar age of Lower Riphean sedimentary geochronometers of the Anabar massif. Izvestiya AN SSSR, Ser. geol., (7), 17-32. (In Russ.)
10. Gusev N.I. (2013) Anabar Shield of the Siberian Craton. Material composition, geochemistry, geochronology. Saarbrucken: LAP Lambert Academic Publishing, 189 p. (In Russ.)
11. Khudoley A., Chamberlain K., Ershova V., Sears J., Prokopiev A., MacLean J., Kazakova G., Malyshev S., Molchanov A., Kullerud K., Toro J., Miller E., Veselovskiy R., Li A., Chipley D. (2015) Proterozoic superconti- nental restorations: constraints from provenance studies of Mesoproterozoic to Cambrian clastic rocks, eastern Siberian Craton. Precambrian Res., 259, 78-94. https://doi.org/10.1016/j.precamres.2014.10.003
12. Komar V.A. (1966) Stromatolites of the Upper Precambrian deposits of the northern Siberian platform and their stratigraphic significance. Moscow, Nauka, 114 p. (In Russ.)
13. Konstantinovsky A.A. (2000) Paleoplacers in the evolution of the sedimentary shell of the continents. Moscow, Nauchnyy mir, 288 p. (In Russ.)
14. Kuptsova A.V. (2012) Features of the structure and evolution of the Riphean uranium-bearing basins: Pashsko-Ladoga, East Anabar and Athabasca. Cand. geol. and min. sci. diss. St.Petersburg, SPbSU, 160 p. (In Russ.)
15. Kuptsova A.V., Khudoley A.K., Davis V., Rainbird R.H., Molchanov A.V. (2015) Results of U-Pb dating of detrital zircons from Upper Proterozoic deposits of the eastern slope of the Anabar Uplift. Stratigraphyia. Geol. Correlatsiya, 23(3), 13-29. (In Russ.)
16. Kuptsova A.V., Khudoley A.K., Molchanov A.V. (2011) Lithogeochemistry of Upper Proterozoic terrigenous deposits of the southern part of the East Anabar Basin: Evolution of the composition of sources of demolition and secondary changes. Vestnik SPbGU, 7(1), 17-31. (In Russ.)
17. Lopatin B.G. (1972) State Geological Map of the USSR: An explanatory note. Anabar series, sheets R-49-XV, XVI. Moscow, Nedra Publ., 82 p. (In Russ.)
18. Lopatin B.G., Tabunov S.M. (1969) State Geological Map of the USSR: An explanatory note. Anabar series, sheets R49-XXIII, XXIV. Moscow, Nedra Publ., 40 p. (In Russ.)
19. McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N. (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Amer., 284, 21-40.
20. Paquette J.L., Ionov D.A., Agashev A.M., Gannoun A., Nikolenko E.I. (2017) Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton. Precambrian Res., 301, 134-144. https://doi.org/10.1016/j.precamres.2017.09.008
21. Pasenko A.M., Malyshev S.V., Pazukhina A.A., Savelev A.D., Lipenkov G.V., Chamberlain K.R. (2023) Age, Composition, and Paleomagnetism of Dolerite–Gabbro Dolerite Intrusions of the Western Slope of the Anabar Massif: The Issue of Vendian Magmatism in the Region. Dokl. Earth Sci., (6). https://doi.org/10.1134/S1028334X2360278X
22. Petrov P.Yu. (2011) Facies characteristics and features of terrigenous sedimentation of the Mukun Group (Lower Riphean of the Anabar uplift of Siberia). Litologiya i Polez. Iskopaemye, (2), 185-208. (In Russ.)
23. Pettijohn F., Potter P., Seaver R. (1976) Sands and Sandstones. Moscow, Mir Publ., 535 p. (In Russ.)
24. Rosen O.M., Zhuravlev D.Z., Sukhanov M.K., et al. (2000) Isotope-geochemical and age characteristics of Early Proterozoic terranes, collision zones, and associated anorthosites in the northeastern Siberian Craton. Geol. Geofiz., 41(2), 163-179. (In Russ.)
25. Savitsky V.E., Demokidov K.K., Sobolevskaya R.F., Kabankov V.Ya., Lazarenko N.P. (1959) Stratigraphy of the Sinic and Cambrian deposits of the northeastern Siberian platform. Trudy nauchn.-issl. in-ta geol. Arktiki, 101. (In Russ.)
26. Sergeeva L.Yu. (2021) Composition and isotope-geochemical characteristics of zircon from granulites of the Ddaldyn Ggroup of the Anabar Shield. Cand. geol. and min. sci. diss. St.Petersburg, St. Petersburg Mining University, 183 p. (In Russ.)
27. Shpunt B.R., Shapovalova I.G., Shamshina E.A. (1982) Late Precambrian of the northern Siberian platform. Novosibirsk, Nauka, 225 p. (In Russ.)
28. Shvanov V.N. (1987) Petrography of sand rocks (component composition, systematics and description of mineral species. Leningrad, Nedra Publ., 269 p. (In Russ.)
29. State Geological Map of the Russian Federation (G.V. Lipenkov, M.S. Maschak, V.T. Kirichenko, A.I. Larichev et al.). (2015) Masshtab 1 : 1 000 000. Anabaro-Vilyuy series, sheet R-48. St.Petersburg, VSEGEI. (In Russ.)
30. State Geological Map of the Russian Federation (N.I. Gusev, M.G. Pushkin). (2016) Masshtab 1 : 1 000 000. Anabaro-Vilyuy series, sheet R-49. St.Petersburg, VSEGEI. (In Russ.)
31. State Geological Map of the USSR (B.G. Lopatin, S.M. Tabunov). (1965) Masshtab 1 : 200 000. Anabar series, sheets R-49-XXIII, XXIV. Moscow, Main Directorate of Geodesy and Cartography of the State Geological Committee of the USSR. (In Russ.)
32. Taylor S.R., McLennan S.M. (1985) The Continental Crust: Its composition and evolution. London, Blackwell Scientific Publications, 312 p.
33. Ulmer-Scholle Dana S., Scholle Peter A., Schieber Juergen, Raine Robert J.A. (2014) Color Guide to the Petrography of Sandstones, Siltstones, Shales and Associated Rocks. Amer. Assoc. Petrol. Geolog., 109, 544 p. https://doi.org/10.1306/M1091304
34. Vermeesch P. (2018) IsoplotR: A free and open toolbox for geochronology. Geosci. Frontiers, 9(5), 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001.
35. Veselovsky R.V., Pavlov V.E., Petrov P.Yu. (2009) New paleomagnetic data on the Anabar uplift and Uchur-Maisky region and their significance for the paleogeography and geological correlation of the Riphean of the Siberian platform. Fizika Zemli, (7), 3-24. (In Russ.) https://doi.org/10.1134/S0002333709070011
36. Warr Laurence N. (2021) IMA-CNMNC approved mineral symbols. Mineral. Magaz., (85), 291-320. https://doi. org/10.1180/mgm.2021.43
37. Yudovich Ya.E., Ketris M.P. (2000) Fundamentals of lithochemistry. St.Petersburg, Nauka Publ., 479 p. (In Russ.).
Review
For citations:
Karpinchik G.O., Savelyev A.D., Sereda E.E. Petrographic features and provenance reconstruction of the Lower Riphean sandstones of the Mukun Group of the south-eastern Anabar shield. LITHOSPHERE (Russia). 2025;25(3):373-397. (In Russ.) https://doi.org/10.24930/2500-302X-2025-25-3-373-397. EDN: DJMCOG