Preview

LITHOSPHERE (Russia)

Advanced search

Synthesis of djerfisherite K6Fe24.5S26Cl by isobaric-isothermal holding method at T = 500 °C and P = 500 atm

https://doi.org/10.24930/1681-9004-2025-25-2-344-354

EDN: WCJFEF

Abstract

   Research subject. A series of experiments on the synthesis of ferrous djerfisherite by the isobaric-isothermal holding method were carried out. We used standard autoclaves made of alloy steel with a volume of 200 cm3 as high-pressure vessels. The starting material for the synthesis was a mixture of FeS2 (pyrite) + Fe2O3 + K2CO3 + KCl, ground into powder, metallic aluminum and fluid (water + ethanol) were used to maintain reducing conditions.

   Aim. To establish the optimal parameters for the synthesis of djerfisherite and to obtain a representative amount of djerfisherite for further studies of its stability under controlled conditions (T, P, fO2, etc.).

   Methods. In order to identify the obtained phases, we first carried out X-ray diffraction analysis and then Raman spectroscopy; scanning electron microscopy with energy-dispersive spectrometry were used to determine the chemical composition of all newly formed phases.

   Results. Djerfisherite of the composition K6Fe24.5S26Cl was synthesized together with troilite ± sylvite. Semi-quantitative ratios of newly formed phases indicate the presence of djerfisherite in amounts from 30 to 80 wt %. The Raman spectra of synthetic djerfisherite correspond to previous studies.

   Conclusions. Favorable parameters for the synthesis of djerfisherite are: T = 500°C, P = 500 atm, t = 168 hours. As a result of experiments we synthesized djerfisherite (72 wt %), together with troilite (21 wt %) and sylvite (7 wt %), with a total mass of about 15 g.

About the Authors

S. V. Potapov
Institute of the Earth’s Crust, SB RAS
Russian Federation

Sergey V. Potapov

664033; 128 Lermontova st.; Irkutsk



I. S. Sharygin
Institute of the Earth’s Crust, SB RAS
Russian Federation

Igor S. Sharygin

664033; 128 Lermontova st.; Irkutsk



V. Ya. Medvedev
Institute of the Earth’s Crust, SB RAS
Russian Federation

Vladimir Ya. Medvedev

664033; 128 Lermontova st.; Irkutsk



L. A. Ivanova
Institute of the Earth’s Crust, SB RAS
Russian Federation

Larisa A. Ivanova

664033; 128 Lermontova st.; Irkutsk



S. V. Rashchenko
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS
Russian Federation

Sergey V. Rashchenko

630090; 3 Koptyug av.; Novosibirsk



Yu. D. Shcherbakov
A.P. Vinogradov Institute of Geochemistry, SB RAS
Russian Federation

Yuri D. Shcherbakov

664033; 1A Favorsky st.; Irkutsk



References

1. Abersteiner A., Kamenetsky V.S., Goemann K., Golovin A.V., Sharygin I.S., Giuliani A., Rodemann T., Spetsius Z.V., Kamenetsky M. (2019) Djerfisherite in kimberlites and their xenoliths: Implications for kimberlite melt evolution. Contrib. Miner. Petrol., 174(8).

2. Belov N.V., Godovikov A.A., Bakakin V.V. (1982) Eassays on theoretical mineralogy. Moscow, Nauka Publ., 206 p. (In Russ.)

3. Clarke D.B. (1979) Synthesis of nickeloan djerfisherite and the origin of potassic sulphides at the Frank Smith mine. The mantle sample: Inclusions in kimberlites and other volcanics. Proc. Second Int. Kimberlite Conf. V. 2. 300-307.

4. Clay P.L., O’Driscoll B., Upton B.G.J., Busemann H. (2014) Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites. Amer. Miner., 99, 1683-1693.

5. Dmitrieva M. T., Ilyukhin V. V. (1975) Crystal structure of djerfisherite. Sov. Phys. Dokl, 20, 7, 469-470. (In Russ.)

6. El Goresy A., Yabuki H., Ehlers K., Woolum D., Pernicka E. (1988) Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites. Proc. NIPR Symp. Antarct. Meteorites, 1, 65-101.

7. Fuchs L.H. (1966) Djerfisherite, alkali cooper iron sulfide: A new mineral from enstatite chondrites. Science, 153(3732), 166-167.

8. Golovin A.V., Goryanov S.V., Kokh S.N., Sharygin I.S., Rashchenko S.V., Kokh K.A., Sokol E.V., Devyatiyarova A.S. (2017) The application of Raman spectroscopy to djerfisherite identification. J. Raman Spectroscopy, 48, 1574-1582.

9. Gorbachev N.S., Nekrasov I.Y. (1980) Genesis of synthetic and natural potassium sulfides. Dokl. Acad. Sci. USSR, 251, 126-129. (In Russ.)

10. Lin Y., El Goresy A. (2002) A comparative study of opaque phases in Qingzhen (EH3) and MacAlpine Hills 88136 (EL3): Representatives of EH and EL parent bodies. Meteor. Planet. Sci., 37(4), 577-599.

11. Panina L.I., Isakova A.T. (2019) Djerfisherite in monticellite rocks of the Krestovskaya intrusion (Polar Siberia). Petrology, 27, 171-185 (translated from Petrologiya, 27(2), 187-205).

12. Petříček V., Palatinus L., Plášil J., Dušek M. (2023) Jana2020 – a New Version of the Crystallographic Computing System Jana. Zeitschrift Für Kristallographie – Crystalline Materials, 238(7-8), 271-282.

13. Sharygin V.V., Golovin A.V., Pokhilenko N.P., Kamenetsky V.S. (2007) Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): Paragenesis, composition and origin. Europ. J. Minerol., 19, 51-63.

14. Sharygin I.S., Golovin A.V., Pokhilenko N.P. (2012) Djerfisherite in xenoliths of sheared peridotite in the Udachnaya-East pipe (Yakutia): Origin and relation to kimberlite magmatism. Rus. Geol. Geophys., 53(3), 247-261 (translated from Geol. Geofiz., 53(3), 321-340).

15. Sokol E.V., Deviatiiarova A.S., Kokh S.N., Reutsky V.N., Abersteiner A., Philippova K.A., Artemyev D.A. (2021) Sulfide Minerals as Potential Tracers of Isochemical Processes in Contact Metamorphism: Case Study of the Kochumdek Aureole, East Siberia. Minerals, 11(1), 17.

16. Wojdyr M. (2010) Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr., 43, 1126-1128.

17. Zaccarini F., Thalhammer A.O.R., Princivalle F., Lenaz D., Stanley C.J., Garuti G. (2007) Djerfisherite in the Guli dunite complex, Polar Siberia: A primary or metasomatic phase? Can. Mineralogist, 45, 1201-1211.


Review

For citations:


Potapov S.V., Sharygin I.S., Medvedev V.Ya., Ivanova L.A., Rashchenko S.V., Shcherbakov Yu.D. Synthesis of djerfisherite K6Fe24.5S26Cl by isobaric-isothermal holding method at T = 500 °C and P = 500 atm. LITHOSPHERE (Russia). 2025;25(2):344-354. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-344-354. EDN: WCJFEF

Views: 812


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)