Preview

LITHOSPHERE (Russia)

Advanced search

Formation of mineral-like phases in the system Sr9In(PO4)7–Ca9Ln(PO4)7

https://doi.org/10.24930/1681-9004-2025-25-2-336-343

EDN: ZBMZGX

Abstract

   Research subject. A series of mineral-like phases with strontiowhitlockite structure (1–x)Sr9In(PO4)7xCa9Ln(PO4)Ln = Eu3+, Yb3+.

   Aim: An analysis of phase formation patterns and crystal-chemical characteristics influencing the crystallization of mineral-like phases within the studied series.

   To achieve the aim, the following set of Materials and Methods is used: the powder X-ray diffraction (PXRD), the second harmonic generation (SHG), dielectric spectroscopy, the photoluminescence spectroscopy.

    Results. Doped phosphates with strontiowhitlockite structure were synthesized by a high temperature solid-state method. The structure was confirmed through X-ray diffraction method. The PXRD patterns of all samples were compared with strontiowhitlockite-type phosphate Sr9In(PO4)7. There was an absence of SHG signals, conforming the non-polar structure. The λ-maximum is observed in the temperature dependence of the dielectric constant for all sensitized samples, while no anomalies were recorded on the loss tangent. The similar behaviour in dielectric curves may indicate isostructurality of studied samples, and crystallisation in non-polar space group. It was shown that samples demonstrate stable photoluminescence in red-orange region for Eu3+-doped phosphates, while Yb3+-doped ones shown IR-photoluminescence properties.

   Conclusions. A series (1–x)Sr9In(PO4)7–xCa9Ln(PO4)7 was crystallised in Sr9In(PO4)structure, where Sr2+ sites, with coordination number equals to 8, were substituted by Ca2+ and Eu3+. Such ions cannot occupy In3+ site, which is presented by small octahedral, due to high ionic radius difference between ions. However smallest ion as Yb3+ can occupy small octahedral site. Dielectric and photoluminescence properties were studied in (1–x)Sr9In(PO4)7xCa9Ln(PO4)7.

About the Authors

I. V. Nikiforov
M.V. Lomonosov Moscow State University
Russian Federation

Ivan V. Nikiforov

Department of Chemistry

119991; 1 Lenin Hills; Moscow



E. S. Zhukovskaya
M.V. Lomonosov Moscow State University
Russian Federation

Evgenia S. Zhukovskaya

Department of Chemistry

119991; 1 Lenin Hills; Moscow



A. N. Gosteva
I.V. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre, KSC RAS
Russian Federation

Alevtina N. Gosteva

184209; 26A Fersman st.; Apatity



S. M. Aksenov
Geological Institute, KSC RAS; Laboratory of Arctic Mineralogy and Material Sciences, KSC RAS
Russian Federation

Sergey M. Aksenov

184209; 26A Fersman st.; 10A Akademgorodok; Apatity



D. V. Deyneko
M.V. Lomonosov Moscow State University; Laboratory of Arctic Mineralogy and Material Sciences, KSC RAS
Russian Federation

Dina V. Deyneko

Department of Chemistry

119991; 1 Lenin Hills; Moscow; 184209; 10A Akademgorodok; Apatity



References

1. Nikiforov I.V., Titkov V.V., Aksenov S.М., Lazoryak B.I., Baryshnikova О.V., Deyneko D.V. (2024) Structural features of phosphors based on strontiowhitlockite. J. Structural Chem., 65(8), 131548-131548. doi: 10.26902/jsc_id131548

2. Asmaa E.K., Mohammed E., Giancarlo D.V., Armida S., Rosanna R., Manuela R., Francesco C. (2017) Synthesis, structure refinement and vibrational spectroscopy of new rare-earth tricalcium phosphates Ca9RE(PO4)7 (RE = La, Pr, Nd, Eu, Gd, Dy, Tm, Yb). Ceram. Int., 4715645-15653.

3. Belik A.A., Izumi F., Ikeda T., Okui M., Malakho A.P., Morozov V.A., Lazoryak B.I. (2002) Whitlockite-Related Phosphates Sr<sub>9</sub>A(PO<sub>4</sub>)<sub>7</sub> (A=Sc, Cr, Fe, Ga, and In): Structure Refinement of Sr<sub>9</sub>In(PO<sub>4</sub>)<sub>7</sub> with Synchrotron X-Ray Powder Diffraction Data. J. Solid State Chem., 168(1), 237-244. doi: 10.1006/jssc.2002.9716

4. Belik A.A., Izumi F., Stefanovich S.Y., Malakho A.P., Lazoryak B.I., Leonidov I.A., Leonidova O.N., Davydov S.A. (2002) Polar and Centrosymmetric Phases in Solid Solutions Ca<sub>3-x</sub>Srx(PO<sub>4</sub>)<sub>2</sub> (0 ≤ x ≤ 16/7). Chem. Mater., 14(7), 3197-3205. doi: 10.1021/cm020243l

5. Britvin S.N., Pakhomovskii Y.A., Bogdanova A.N., Skiba V.I. (1991) Strontiowhitlockite, Sr<sub>9</sub>Mg(PO<sub>3</sub>OH) (PO<sub>4</sub>)<sub>6</sub>, a new mineral species from the Kovdor Depo sit, Kola Peninsula, U.S.S.R. Can. Mineral., 29(1), 87-93.

6. Deyneko D.V., Aksenov S.M., Nikiforov I.V., Stefanovich S.Y., Lazoryak B.I. (2020) Symmetry Inhomogeneity of Ca<sub>9-x</sub>Zn<sub>x</sub>Eu(PO<sub>4</sub>)<sub>7</sub> Phosphor Determined by Second-Harmonic Generation and Dielectric and Photoluminescence Spectroscopy. Cryst. Growth Des., 20(10), 6461-6468. doi: 10.1021/acs.cgd.0c00637

7. Deyneko D.V., Nikiforov I.V., Spassky D.A., Dikhtyar Y.Y., Aksenov S.M., Stefanovich S.Y., Lazoryak B.I. (2019) Luminescence of Eusup>3+</sup> as a probe for the determination of the local site symmetry in β-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>-related structures. CrystEngComm, 21(35), 5235-5242. doi: 10.1039/C9CE00931K

8. Du F., Nakai Y., Tsuboi T., Huang Y., Seo H.J. (2011) Luminescence properties and site occupations of Eu<sup>3+</sup> ions doped in double phosphates Ca<sub>9</sub>R(PO<sub>4</sub>)<sub>7</sub> (R = Al, Lu). J. Mater. Chem., 21(12), 4669-4678. doi: 10.1039/C0JM03324C

9. Kim D., Seo Y.W., Park S.H., Choi B.C., Kim J.H., Jeong J.H. (2020) Theoretical design and characterization of high efficient Sr<sub>9</sub>Ln(PO<sub>4</sub>)<sub>7</sub>: Eu<sup>2+/sup> phosphors. Mater. Res. Bull., 127, 110856. doi: 10.1016/j.materresbull.2020.110856

10. Kong J., Wang Y., Tong W., Li L., Xu Y., Chen N., Liu N. (2024) Highly efficient cyan-red emission in self-activated Sr<sub>9</sub>In(VO<sub>4</sub>)<sub>7</sub>:<sub>x</sub>Eu<sup>sup>3+</sup></sup> phosphors for applications in W-LEDs and optical thermometry. J. Alloys Compd., 983, 173936. doi: 10.1016/j.jallcom.2024.173936

11. Ma X., Sun S., Ma J. (2019) A novel orange-red Sr<sub>9</sub>Ga(PO<sub>4</sub>)<sub>7</sub>:Sm<sup>3+</sup> phosphors for white light emitting dio des. Materials Res. Express, 6(11), 116207. doi: 10.1088/2053-1591/ab47c6

12. Morozov V.A., Belik A.A., Stefanovich S.Y., Grebenev V.V., Lebedev O.I., Van Tendeloo G., Lazoryak B.I. (2002) High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7. J. Solid State Chem., 165(2), 278-288.

13. Nikiforov I.V., Spassky D.A., Krutyak N.R., Shendrik R.Y., Zhukovskaya E.S., Aksenov S.M., Deyneko D.V. (2024) Co-Doping Effect of Mn<sup>2+</sup> and Eu<sup>3+</sup> on Luminescence in Strontiowhitlockite Phosphors. Molecules, 29(1). doi: 10.3390/molecules29010124

14. Yu M., Lin J., Wang S.B. (2005) Effects of xand R<sup>3+</sup> on the luminescent properties of Eu<sup>3+</sup> in nanocrystalline YV<sub>x</sub>P1-xO<sub>4</sub>:Eu<sup>3+</sup> and RVO1:Eu<sup>3+</sup> thin-film phosphors. Applied Physics A, 80(2), 353-360. doi: 10.1007/s00339-003-2230-5.

15. Yu Q., Wang L., Huang P., Shi Q., Tian Y., Cui C.E. (2020) Synthesis and photoluminescence properties of Eu<sup>2+</sup>-activated Sr<sub>9</sub>In<sub>1-y</sub>Lu<sub>y</sub>(PO<sub>4</sub>)<sub>7</sub> phosphors. J. Mater. Sci. – Mater. Electron., 31(1), 196-201. doi: 10.1007/s10854-018-0501-3

16. Zhang J., Cai G., Wang W., Ma L., Wang X., Jin Z. (2020) Tuning of Emission by Eu<sup>3+</sup> Concentration in a Pyrophosphate: The Effect of Local Symmetry. Inorg. Chem., 59(4), 2241-2247. doi: 10.1021/acs.inorgchem.9b02949


Review

For citations:


Nikiforov I.V., Zhukovskaya E.S., Gosteva A.N., Aksenov S.M., Deyneko D.V. Formation of mineral-like phases in the system Sr9In(PO4)7–Ca9Ln(PO4)7. LITHOSPHERE (Russia). 2025;25(2):336-343. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-336-343. EDN: ZBMZGX

Views: 827


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)