Electron backscatter diffraction in the study of microdeformations in zircon grains from meteorite craters: methodological aspects
https://doi.org/10.24930/1681-9004-2025-25-2-309-319
EDN: WGKFCX
Abstract
Subject of Research. Methodological aspects of sample preparation and electron backscatter diffraction (EBSD) in the study of microdeformations in zircon grains.
Objects and Methods. Fragments of impactites from shock-metamorphosed rocks of the Vredefort (South Africa) and Kara (Pay-Khoy Ridge, Yugorsky Peninsula, Russia) impact craters were investigated using scanning electron microscopy (SEM) and electron backscatter diffraction.
Results. The identification of zircon grains with specific microdeformations requires high-spatial-resolution (tens of nanometers) examination of large polished rock surfaces, which demands significant instrument time. To reliably detect microdeformations in zircon, the following methodological challenges were addressed: (1) analyzing the influence of Electron Backscatter Diffraction Pattern (EBSP) imaging conditions at different beam accelerating voltages (10, 20, and 29 kV) on the signal-to-noise ratio, spatial resolution, and Kikuchi band width; (2) comparing zircon grain orientation maps obtained at different voltages; (3) developing an algorithm for mineral identification and microdeformation finding; and (4) validating the methodology on zircon grains from the Vredefort and Kara impact craters.
Conclusions. The sample preparation methodology for EBSD analysis was refined, and methods for processing EBSD data to improve Kikuchi diffraction pattern indexing were explored. The efficiency of detecting and analyzing shock-metamorphosed zircon grains using scanning electron microscopy was enhanced through optimized electron imaging and EBSD mapping conditions. An algorithm for mineral identification in thin sections (rock slices) was developed. The methodology was validated on a series of 50 thin sections from the Kara and Vredefort impactites, resulting in the identification of 436 zircon grains, including all known types of zircon microdeformations.
About the Authors
A. A. DavletshinaRussian Federation
Alina A. Davletshina
620110; 15 Academician Vonsovsky st.; Ekaterinburg
N. S. Chebykin
Russian Federation
Nikolai S. Chebykin
620110; 15 Academician Vonsovsky st.; Ekaterinburg
D. A. Zamyatin
Russian Federation
Dmitriy A. Zamyatin
620110; 15 Academician Vonsovsky st.; Ekaterinburg
References
1. Feldman V.I. (2018) Impactitogenesis. (Ed. L.I. Glazovskaya). Moscow, KDU; Universitetskaya Kniga, 154 p.
2. Bohor B.F., Betterton W.J., Krogh T.E. (1993) Impact-shocked zircons: Discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth Planet. Sci. Lett., 119(3), 419-424.
3. Cavosie A.J., Erickson T.M., Timms N.E., Reddy S.M., Talavera C., Montalvo S.D., Moser D. (2015) A terrestrial perspective on using ex situ shocked zircons to date lunar impacts. Geology, 43(11), 999-1002.
4. Cavosie A.J., Quintero R.R., Radovan H.A., Moser D.E. (2010) A record of ancient cataclysm in modern sand: Shock microstructures in detrital minerals from the Vaal River, Vredefort Dome, South Africa. Bulletin, 122(11-12), 1968-1980.
5. Cavosie A.J., Timms N.E., Ferrière L., Rochette P. (2018) FRIGN zircon – The only terrestrial mineral diagnostic of high-pressure and high-temperature shock deformation. Geology, 46(10), 891-894.
6. Chinchalkar N.S., Osinski G.R., Erickson T.M., Cayron C. (2024) Zircon microstructures record high temperature and pressure conditions during impact melt evolution at the West Clearwater Lake impact structure, Canada. Earth Planet. Sci. Lett., 636, 118714.
7. Corfu F., Hanchar J.M., Hoskin P.W., Kinny P. (2003) Atlas of zircon textures. Rev. Miner. Geochem., 53(1), 469-500.
8. Erickson T.M., Pearce M.A., Reddy S.M., Timms N.E., Cavosie A.J., Bourdet J., Nemchin A.A. (2017) Microstructural constraints on the mechanisms of the transformation to reidite in naturally shocked zircon. Contrib. Miner. Petrol., 172, 1-26.
9. Erickson C.A., Wink L.K., Ray B., Early M.C., Stiegelmeyer E., Mathieu-Frasier L., McDougle C.J. (2013) Impact of acamprosate on behavior and brain-derived neurotrophic factor: An open-label study in youth with fragile X syndrome. Psychopharmacology, 228, 75-84.
10. Finch R.J., Hanchar J.M. (2003) Structure and chemistry of zircon and zircon-group minerals. Rev. Miner. Geochem., 53(1), 1-25.
11. French B.M. (1998) Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures (No. LPI-Contrib-954).
12. Kovaleva E., Zamyatin D.A. (2021) Revealing microstructural properties of shocked and tectonically deformed zircon from the Vredefort impact structure: Raman spectroscopy combined with SEM microanalyses.
13. Leroux H., Reimold W.U., Koeberl C., Hornemann U., Doukhan J.C. (1999) Experimental shock deformation in zircon: A transmission electron microscopic study. Earth Planet. Sci. Lett., 169(3-4), 291-301.
14. Moser D.E., Cupelli C.L., Barker I.R., Flowers R.M., Bowman J.R., Wooden J., Hart J.R. (2011) New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U–Pb and (U–Th)/He analysis of the Vredefort dome. Canad. J. Earth Sci., 48(2), 117-139.
15. Timms N.E., Erickson T.M., Pearce M.A., Cavosie A.J., Schmieder M., Tohver E., Wittmann A. (2017) A pressure-temperature phase diagram for zircon at extreme conditions. Earth-Sci. Rev., 165, 185-202.
16. Timms N.E., Reddy S.M., Healy D., Nemchin A.A., Grange M.L., Pidgeon R.T., Hart R. (2012) Resolution of impact‐related microstructures in lunar zircon: A shock‐deformation mechanism map. Meteor. Planet. Sci., 47(1), 120-141.
Review
For citations:
Davletshina A.A., Chebykin N.S., Zamyatin D.A. Electron backscatter diffraction in the study of microdeformations in zircon grains from meteorite craters: methodological aspects. LITHOSPHERE (Russia). 2025;25(2):309-319. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-309-319. EDN: WGKFCX