Electrophysical properties of demantoid and andradite garnets according to high-temperature impedance spectroscopy data: the influence of chemical and phase impurities (methodological aspects)
https://doi.org/10.24930/1681-9004-2025-25-2-281-294
EDN: WFNGVY
Abstract
Object of the study and methods. Electrical characteristics of demantoid from clinopyroxenites (Poldnevskoye deposit, Middle Urals) and two samples of andradite 1-2 from skarns (Verkhniy Ufaley, Middle Urals; Sokolovsky mine, Rudny, Kazakhstan) were studied by impedance high-temperature spectroscopy in the heating-cooling mode at temperatures of 200–900 °C and frequencies of 1–106 Hz using of platinum and lanthanum-strontium cobaltite electrodes. Thermogravimetric, X-ray diffraction and diffuse light scattering data are presented.
Results. Experimental chemical formulas of andradite 1-2 and demantoid are (Mg0.24Ca3.16Mn0.04)(Fe1.63Al0.33)Si2.95Ti0.05O12.14, (Ca3.49Mn0.04)(Fe1.79Al0.51)Si2.94Ti0.06O12.97, (Ca3.51Mn0.01) (Fe2.49Al0.05Cr0.0038)Si3.00O13.34, respectively. Andradite 1 contains up to ~20 % clinochlore impurity and an insignificant content of ferrobustamite impurity; in andradite 2 – no more than ~8 % of isostructural impurity of hydroandradite; demantoid does not contain phase impurities, while the peaks of the garnet phase are asymmetric due to the presence of two phases with the garnet structure. In the optical spectra of andradite 1-2, a wide band is observed in the near UV region and a significant number of sufficiently wide bands in the visible region associated with the absorption of Fe2+, Fe3+ and Ti4+ ions; Spectra of annealed samples of andradites at 750 °С are similar. For demantoid, a wide absorption band of 860 nm is observed, it shifts to 700 nm after annealing; it is assumed that the 860 nm band is associated with Cr2+ ions, which undergo additional oxidation during annealing. The Arrhenius dependences of the electrical conductivity of andradite 1 during heating and cooling differ from each other due to the presence of impurity phases (mainly clinochlore) in the sample. Dependencies for andradite 2 and demantoid in heating-cooling mode are close to each other, while the electrical conductivity of andradite 2 is higher than that of andradite 1. At temperatures of 750–775 °C, demantoid has the highest conductivity; while the Cr impurity does not make a significant contribution to its conductivity.
Conclusions. Electrical characteristics of demantoid were obtained for the first time; Arrhenius dependences of two andradites of different chemical and phase composition were analyzed; it was shown that the composition has a significant effect on electrical conductivity. The obtained data can be used to construct geoelectric models of fragments of the earth's crust with the corresponding minerals.
About the Authors
I. A. ZhelunitsynRussian Federation
Ivan A. Zhelunitsyn
620110; 15 Academician Vonsovsky st.; Ekaterinburg
Z. A. Mikhaylovskaya
Russian Federation
Zoya A. Mikhaylovskaya
620110; 15 Academician Vonsovsky st.; 620075; 51 Lenin av.; Ekaterinburg
S. L. Votyakov
Russian Federation
Sergey L. Votyakov
620075; 51 Lenin av.; Ekaterinburg
References
1. Ahadnejad V., Krzemnicki M.S., Hirt A.M. (2022) Demantoid from Kerman Province, South-east Iran : A Mineralogical and Gemmological Overview. J. Gemmology, 38(4), 329-347. doi: 10.15506/JoG.2022.38.4.329
2. Andrut M., Wildner M. (2001) The crystal chemistry of bire-fringent natural uvarovites: Part I. Optical investigations and UV–VIS–IR absorption spectroscopy. Amer. Miner., 86, 1219-1230. doi: 10.2138/am-2001-1010
3. Bakhterev V.V. (2004) Formational typification of ultramafic rocks in the Urals based on parameters of their high-temperature conductivity. Dokl. Earth Sci., 398(7), 987-989 (translated from Doklady RAS, 398(3), 371-373).
4. Bakhterev V.V., Kuznetsov A.Z. (2012) High-temperature conductivity of magnetite ores in relation to their genesis and mineral composition (by the example of the goroblagodatskoe skarn-magnetite deposit). Rus. Geol. Geophys., 53(2), 209-213 (translated from Geologiya i Geofizika, 53(2), 270-276). doi: 10.1016/j.rgg.2011.12.017
5. Bakhterev V.V. (2021) Dunites and clinopyroxenites from the Kytlymsky hyperbasite massif. Results of the study of high-temperature electrical conductivity. Ural Geophys. Bull., 1(43), 21-26. (In Russ.) doi: 10.25698/UGV.2021.1.3.21
6. Burns R.G. (1993) Mineralogical applications of crystal field theory (2<sup>nd</sup> Ed). Cambridge: Cambridge University Press, 551 p. doi: 10.1017/CBO9780511524899
7. Dai L., Hu H., Jiang J., Sun W., Li H., Wang M., Vallianatos F., Saltas V. (2020) An overview of the experimental studies on the electrical conductivity of major minerals in the upper mantle and transition zone. Materials, 13(2), 408. doi: 10.3390/ma13020408
8. Fullea J. (2017) On joint modelling of electrical conductivity and other geophysical and petrological observables to infer the structure of the lithosphere and underlying upper mantle. Surv. Geophys., 38, 963-1004. doi: 10.1007/s10712-017-9432-4
9. Glover P.W.J. (2015) Geophysical properties of the near surface Earth: Electrical properties. Treat. Geophys. (2<sup>nd</sup> Ed). Vol. 11. Amsterdam: Elsevier, 89-137. doi: 10.1016/B978-0-444-53802-4.00189-5
10. Han K., Yi L., Wang D. (2024) Thermal decomposition kinetics of сlinochlore at high temperature and its implications. Can. J. Mineral. Petrol., 62(1), 107-116. doi: 10.3749/2300033
11. Hassan M.A., Ahmad F., Abd El-Fattah Z.M. (2018) Novel identification of ultraviolet/visible Cr<sup>6+</sup>/Cr<sup>3+</sup> optical transitions in borate glasses J. Alloys Comp., 750, 320-327. doi: 10.1016/j.jallcom.2018.03.351
12. Huebner J.S., Dillenburg R.G. (1995) Impedance spectra of hot, dry, silicate minerals and rock: Qualitative interpretation of spectra. Amer. Miner., 80(1), 46-64. doi: 10.1016/10.2138/am-1995-1-206
13. Jones R.L., Thrall M., Henderson C.M.B. (2010) Complex impedance spectroscopy and ionic transport properties of natural leucite, K<sub>0.90</sub>Na<sub>0.08</sub>[Al<sub>0.98</sub>Si<sub>2.02</sub>]O<sub>6</sub>, as a function of temperature and pressure. Mineral. Mag., 74(3), 507-519. doi: 10.1007/10.1180/minmag.2010.074.3.507
14. Irvine J.T.S., Sinclair D.C., West A.R. (1990) Electroceramics: Characterization by impedance spectroscopy. Adv. Mater., 2(3), 132-138. doi: 10.1002/adma.19900020304
15. Izawa M.R.M., Cloutis E.A., Rhind T., Mertzman S.A., Poitras J., Applin D.M., Mann P. (2018) Spectral reflectance (0.35–2.5 µm) properties of garnets: Implications for remote sensing detection and characterization. Icarus, 300, 392-410. doi: 10.1016/j.icarus.2017.09.005
16. Karato S., Duojun W. (2013) Electrical conductivity of mine rals and rocks. Phys. Chem. Deep Earth. U. S., John Wiley & Sons, 145-182.
17. Kubelka P., Munk F. (1931) Ein Beitrag zur Optik der Farbanstriche. Z. Tech. Phys., 12, 593-601.
18. Kuganathan N., Ganeshalingam S., Chroneos A. (2020) Defect, transport, and dopant properties of andradite garnet Ca<sub>3</sub>Fe<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>. AIP Advances, 10, 075004. doi: 10.1063/5.0012594
19. Mizuno S., Yao H. (2021) On the electronic transitions of α-Fe<sub>2</sub>O<sub>3</sub> hematite nanoparticles with different size and morphology: Analysis by simultaneous deconvolution of UV–vis absorption and MCD spectra. J. Magn. Magn. Mater., 517, 167389. doi: 10.1016/j.jmmm.2020.167389
20. Naif S., Selway K., Murphy B.S., Egbert G., Pommier A. (2021) Electrical conductivity of the lithosphere-asthenosphere system. Phys. Earth Planet. Int., 313, 106661. doi: 10.1016/j.pepi.2021.106661
21. Palke A. (2017) Heat treatment of gem quality andradite (var. demantoid): Is intervalence charge transfer necessary for brown coloration in andradite? Geolog. Soc. Amer. Abstr. Progr. Washington, USA. doi: 10.1130/abs/2017AM-294617
22. Parkhomenko E.I. (1965) Electrical properties of rocks. Moscow, Nauka Publ., 164 p. (In Russ.)
23. Parkhomenko E.I. (1984) Electrical properties of mine rals and rocks at high pressures and temperatures. Diss. … Doctor of Physical and Mathematical Scien ces. Moscow, Institute of Physics of the Earth named after O.Yu. Schmidt, 420 p. (In Russ.)
24. Qian Y., Shen Y., Sun F., Chen J., Tang M., Chen F., Chen Y., Sun Y., Shen H. (2024) Improving the UV transmittance of synthetic quartz through defect repair methods. J. Non-Cryst. Solids, 635, 123019. doi: 10.1016/j.jnoncrysol.2024.123019
25. Roberts J.J., Tyburczy J.A. (1993) Impedance spectroscopy of single and polycrystalline olivine: Evidence for grain boundary transport. Phys. Chem. Miner., 20, 19-26. doi: 10.1007/BF00202246
26. Scheetz B.E., White W.B. (1972) Synthesis and optical absorption spectra of Cr<sup>2+</sup>-containing orthosilicates. Contrib. Miner. Petrol., 37, 221-227 doi: 10.1007/BF00373070
27. Schlechter E., Stalder R., Behrens H. (2012) Electrical conductivity of H-bearing orthopyroxene single crystals measured with impedance spectroscopy. Phys. Chem. Miner., 39, 531-541. doi: 10.1007/s00269-012-0509-9
28. Stockton C.M., Manson D.V. (1983) Gem Andradite Garnets. Gems & Gemology, 19, 202-208. doi: 10.5741/GEMS.19.4.202
29. Sun W., Dai L., Li H., Hu H., Jiang J., Liu C. (2019) Experimental study on the electrical properties of carbonaceous slate: A special natural rock with unusually high conductivity at high temperatures and pressures. High Temp.-High Pres., 48, 439-454. doi: 10.32908/hthp.v48.749
30. Torrent J., Vidal B. (2002) Diffuse Reflectance Spectroscopy of Iron Oxides. Encycl. Surface Colloid Sci. Vol. 1. N. Y.-Basel, Marcel Dekker Inc., 1438-1446.
31. Wang Y., Sun Q., Duan D, Bao X., Liu X. (2019) The study of crystal structure on grossular–andradite solid solution. Minerals, 9(11), 691. doi: 10.3390/min9110691
32. Yang X. (2011) Origin of high electrical conductivity in the lower continental crust : A review. Surv. Geophys., 32, 875-903. doi: 10.1007/10.1007/s10712-011-9145-z
33. Yoshino T. (2019) Electrical properties of rocks. Encycl. Solid Earth Geophys. Cham, Springer, 1–7. doi: 10.1007/978-3-030-10475-7_45-1
34. Yue Y., Dzięgielewska A., Hull S., Krok F., Whiteley R.M., Toms H., Malys M., Zhang M., Abrahams H.Y. (2022) Local structure in a tetravalent-substituent BIMEVOX system: BIGEVOX. J. Mater. Chem. A, 10, 3793-3807. doi: 10.1039/D1TA07547K
35. Zhang L. (2017) A review of recent developments in the study of regional lithospheric electrical structure of the Asian continent. Surv. Geophys., 38, 1043-1096. doi: 10.1007/s10712-017-9424-4
36. Zhu M., Xie H., Guo J., Bai W., Xu Z. (2001) Impedance spectroscopy analysis on electrical properties of serpentine at high pressure and high temperature. Sci. China Ser. D-Earth Sci., 44(4), 336-345. doi: 10.1007/BF02907104
Review
For citations:
Zhelunitsyn I.A., Mikhaylovskaya Z.A., Votyakov S.L. Electrophysical properties of demantoid and andradite garnets according to high-temperature impedance spectroscopy data: the influence of chemical and phase impurities (methodological aspects). LITHOSPHERE (Russia). 2025;25(2):281-294. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-281-294. EDN: WFNGVY