Preview

LITHOSPHERE (Russia)

Advanced search

Surface properties of Cu-poor bornite in dynamics

https://doi.org/10.24930/1681-9004-2025-25-2-251-262

EDN: YJUAQW

Abstract

   Research subject. Cu-poor bornite from copper ores of Volkovskoye deposit (Middle Urals).

   Materials and methods. Specimens with bornite have been sampled from the industrial copper ores at the North-West quarry of the Volkovskoye deposit. Properties of the bornite have been studied in dynamics with optical microscopy in reflected light, energy dispersive spectroscopy, Raman spectroscopy; optical properties have been analyzed using diffusion reflectance spectroscopy.

   Results. Absence of elements diffusive processes into the subsurface layer from bulk bornite during mechanical treatment has been demonstrated, at the surface changing the bornite composition stays be saved in the limits of the measurements accuracy by energy dispersive spectroscopy. The dynamics of surface properties changes for the Cu-poor pink bornite using diffusion reflectance spectroscopy has been established.

   Conclusions. On the basis of the study results a new approach to develop a quantitative criterion for bornite varieties determination for mineralogical-technological mapping and prediction of processing indicators of copper ores has been proposed.

About the Authors

A. I. Morokhin
N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS
Russian Federation

Alexey I. Morokhin

167982; 54 Pervomaiskaya st.; Syktyvkar



M. S. Koroleva
Institute of Chemistry, FRC Komi SC UB RAS
Russian Federation

Mariia S. Koroleva

167000; 48 Pervomaiskaya st.; Syktyvkar



T. G. Shumilova
N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS
Russian Federation

Tatyana G. Shumilova

167982; 54 Pervomaiskaya st.; Syktyvkar



S. I. Isaenko
N.P. Yushkin Institute of Geology, FRC Komi SC UB RAS
Russian Federation

Sergey I. Isaenko

167982; 54 Pervomaiskaya st.; Syktyvkar



References

1. Alekseyev E.E., Yakunkov E.A., Siverin O.O., Bakhmanov D.Ya., Kutergin A.V. (2023) The technology of copper enrichment from the ore of the Udokan deposit with the possibility of extracting precious metals. South Ural State University Journal, 23(3), 5-15. (In Russ.)

2. Anthony J.W., Bideaux R.A., Bladh K.W., Nichols M.C. (2010) Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http://www.handbookofmineralogy.org

3. Bicak O., Ekmekci Z. (2012) Prediction of flotation behavior of sulphide ores by oxidation index. Minerals Engineering, 36-38, 279-28. doi: 10.1016/j.mineng.2012.05.012

4. Borgheresi M., Di Benedetto F., Romanelli M. et al. (2018) Mössbauer study of bornite and chemical bonding in Febearing sulphides. Phys. Chem. Minerals, 45, 227-235. doi: 10.1007/s00269-017-0911-4

5. Brett R. (1962) Heating Experiments on Natural Bornites – Year Book, 1961. Carnegie institution of Washington.

6. Brett R., Yand R. (1964) Sulphur-rich bornites. Amer. Mineral., 49(7–8), 1084-1098.

7. Buckley A.N., Woods R. (1983) An X-ray photoelectron spectroscopic investigation of the tarnishing of bornite. Aust. J. Chem., 36, 1793-1804

8. Cabri L.J. (1973) New Data on Phase Relations in the Cu–Fe–S System. Econ. Geol., 68, 443-454.

9. Chimonyo W., Corin K.C., Wiese J.G., O’Connor C.T. (2017) Redox potential control during flotation of a sulphide mineral ore. Minerals Engineering, 110, 57-64. doi: 10.1016/j.mineng.2017.04.011

10. Chukhrov F.V., Bronstedt-Kupletskaya E.M. et al. (1960) Minerals. Akad. Nauk SSSR, 618 p. (In Russ.)

11. Ciobanu C.L., Cook N.J., Ehrig K. (2017) Ore minerals down to the nanoscale: Cu-(Fe)-sulphides from the iron oxide copper gold deposit at Olympic Dam, South Australia. Ore Geol. Rev., 81, 1218-1235.

12. Ciobanu C.L., Cook N.J., Utsunomiya S., Pring A., Green L. (2011) Focussed ion beam–transmission electron microscopy applications in ore mineralogy: Bridging micro- and nanoscale observations. Ore Geol. Rev., 42, 6-31.

13. Fullston D., Fornasiero D., Ralston J. (1999) Zeta potential study of the oxidation of copper sulfide minerals. Colloids Surf., A, 146, 113-121.

14. Gablina I.F. (2008) Copper and copper-iron sulfides as indicators of the conditions of ore formation and transformation. Fedorov`s session 2008: Int. Scientific Conference. Abstract. St. Petersburg, St. Petersburg State University Publishing House, 32-34. (In Russ.)

15. Gehlen K. von. (1964) Anomaler Bornit und seine Umbildung zu Idait und Chalkopyrit in deszendenten Kupfererzen von Sommerkahl (spessart.). Fortschr. Mineral., 41(2), 163.

16. Harmer S.L., Pratt A.R., Nesbitt H.W., Fleet M.E. (2005) Reconstruction of fracture surfaces on bornite. Can. Mine ral., 43, 1619-1630.

17. Izoitko V.M. (1997) Technological mineralogy and ore evaluation. St. Petersburg, Nauka, 582 p. (In Russ.)

18. Kashin S.A. (1948) Copper-titanomagnetite mineralization in basic intrusive rocks of the Urals. V. 9. Moscow, Trudy GIN Akad. Nauk SSSR. (In Russ.)

19. Kosyak E.A. (1981) About the so-called “anomalous” bournite. Izv. AS USSR. Ser. Geologic, (7), 77-85. (In Russ.)

20. Koto K., Morimoto N. (1975) Superstructure investigation of bornite, Cu<sub>5</sub>FeS<sub>4</sub>, by the modified partial Patterson function. Acta Cryst. B, 31, 2268-2273.

21. Large D.J., MacQuaker J., Vaughan D.J. et al. (1995) Evidence for Low-Temperature Alteration of Sulfides in the Kupferschiefer Copper Deposits of Southwestern Poland. Econ. Geol., 90, 2143-2155.

22. Levin V.L. (1986) About diagnostic of copper sulfides from chalcosine to anilite. Izv. AS USSR. Ser. Geologic, (9), 131-133. (In Russ.)

23. Levin V.L., Kotelnikov P.E. (1986) Dzhezkazgan pink bornite: Causes of color change. Izv. Kaz. SSR. Ser. Geologic, (5), 63-67. (In Russ.)

24. Long S.O.J., Powell A.V., Vaqueiro P., Hull S. (2018) High Thermoelectric Performance of Bornite through Control of the Cu(II) Content and Vacancy Concentration. Chem. Mater., 30(2), 456-464. doi: 10.1021/acs.chemmater.7b04436

25. Losch W., Monhemius A. (1976) An AES study of a copper–iron sulphide mineral. Surf. Sci., 60, 196-210.

26. Lurie A.M., Gablina I.F. (1976) A Zonal Series of Sulfides at Copper Deposits Hosted in Red Beds. Geokhimiya, 14(1), 109-115. (In Russ.)

27. Mernagh T.P., Trudu A.G. (1993) A laser Raman microprobe study of some geologically important sulphide minerals. Chem. Geol., 103, 113-127.

28. Mikhlin Y., Tomashevich Y., Tauson V., Vyalikh D., Molodtsov S., Szargan R. (2005) A comparative X-ray absorption near-edge structure study of bornite, Cu<sub>5</sub>FeS<sub>4</sub>, and chalcopyrite, CuFeS<sub>2</sub>. J. Electron Spectr. Related Phen., 142(1), 83-88. doi: 10.1016/j.elspec.2004.09.003

29. Moimane T., Huai Y., Peng Y. (2020) The critical degree of bornite surface oxidation in flotation. Miner. Eng., 155, 106445. doi: 10.1016/j.mineng.2020.106445

30. Nechkin G.S., Poltavets Z.I. (2003) Genetic features of copper ore with noble metal mineralization at the Volkovsky Deposit, the central Urals. Tr. IGG UrO RAN, vyp. 150, 286-290. (In Russ.)

31. Parker G.K., Woods R., Hope G.A. (2008) Raman investigation of chalcopyrite oxidation. Coll. Surf. A: Physico-chem. Eng., 318, 160-168.

32. Poltavets Yu.A., Sazonov V.N., Poltavets Z.I., Nechkin G.S. (2006) Distribution of noble metals in ore mineral assemblages of the Volkovsky gabbroic pluton, central Urals. Geochem. Int., 44(2), 143-163 (translated from Geokhimiya, (2), 167-190). (In Russ.)

33. Qiu P., Zhang T., Qiu Y., Shi X., Chen L. (2014) Sulfide bornite thermoelectric material: A natural mineral with ultralow thermal conductivity. Energy Environ. Sci., 7, 4000-4006.

34. Ramdohr P. (1962) The Ore Minerals and their Intergrowths. Moscow, 1123 p. (In Russ.)

35. Reflected light ore mineral identification. (1988) Handbook. Leningrad, Nedra Publ., 503 p. (In Russ.)

36. Rodríguez-Carvajal J. (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Phys. Condens. Matter., 192, 55-69. doi: 10.1016/0921-4526(93)90108-I

37. Satpayeva M.K. (1985) Ores of Dzhezkazgan and conditions of their formation. Alma-Ata, Nauka. Kaz. SSR. (In Russ.)

38. Satpayeva M.K., Dara A.D., Polkanova E.V., Kurmakaeva F.A. (1974) Different-colored bornites and chalcosines from ores of Dzhezkazgan – solid solutions of chalcopyrite-bornite-digenite series. Vestnik Akad. Nauk Kaz. SSR, (11), 41-50. (In Russ.)

39. Shumilova T.G., Shevchuk S.S., Makeev B.A. (2014) Varieties of bornite from the Volkovsky deposit are the key to identifying technological type of copper ores. Problems and prospects of modern mineralogy (Yushkin Readings–2014). Conf. proceedings. Mineralogical seminar with international participation. Syktyvkar, Geoprint, 252-253. (In Russ.)

40. Sillitoe R., Clark A. (1969) Copper and copper-iron sulphides as the initial products of supergene oxidation, Capiapo Mining District, Nothern Chile. Amer. Mineral., 54(11-12), 1684-1710.

41. State report “On the state and use of mineral resources of the Russian Federation in 2021”. (2022) Moscow. (In Russ.)

42. Stefanova V., Genevski K., Stefanov B. (2004) Mechanism of Oxidation of Pyrite, Chalcopyrite and Bornite During Flash Smelting. Canad. Metallurg. Quart., 43(1), 78-88. doi: 10.1179/cmq.2004.43.1.78

43. Sugaki A., Shima H., Kitakaze A., Harada H. (1975) Isothermal Phase Relations in the System Cu–Fe–S under Hydrothermal Conditions at 350 °C and 300 °C. Econ. Geol., 70, 806-823.

44. Tafirenyika T.P., O’Connor C.T., Corin K.C. (2022) Investigating the Influence of the Electrochemical Environment on the Flotation of Bornite and Chalcocite. Minerals, 12, 1527. doi: 10.3390/min12121527

45. Tanaka Y., Miki H., Suyantara G.P.W., Aoki Y., Hirajima T. (2021) Mineralogical Prediction on the Flotation Behavior of Copper and Molybdenum Minerals from Blended Cu–Mo Ores in Seawater. Minerals, 11, 869. doi: 10.3390/min11080869

46. Varotsis C., Papageorgiou M., Tselios C., Yiannakkos K.A., Adamou A., Nicolaides A. (2020) Application of Raman Micro Spectroscopy and MicroFTIR Mapping in the Bio-Hydrometallurgy of Copper Sulfide-Minerals. Aspects Min. Miner. Sci., 5(1), 000603. doi: 10.31031/AMMS.2020.05.000603

47. Vaughan D.J., Tossell J.A., Stanley C.J. (1987) The surface properties of bornite. Mineral. Mag., 51, 285-293.

48. White S.N. (2009) Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chem. Geol., 259, 240-252.

49. Yang C.-R., Jiao F., Qin W.-Q. (2018) Cu-state evolution during leaching of bornite at 50 °C. Trans. Nonferrous Met. Soc. China, 28, 1632-1639.

50. Yund R., Kullerud G. (1966) Thermal stability of assemblages in the Cu-Fe-S system. J. Petrol., 7(3), 454-488.


Review

For citations:


Morokhin A.I., Koroleva M.S., Shumilova T.G., Isaenko S.I. Surface properties of Cu-poor bornite in dynamics. LITHOSPHERE (Russia). 2025;25(2):251-262. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-251-262. EDN: YJUAQW

Views: 645


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)