Preview

LITHOSPHERE (Russia)

Advanced search

Frankamenite in charoite rocks of the Murun massif: comparative characterization of green and lilac-gray varieties

https://doi.org/10.24930/1681-9004-2025-25-2-238-250

EDN: XADALM

Abstract

   Research subject. Two varieties of frankamenite, green and lilac-gray, were discovered in the charoite rocks of the Murun massif.

   Aim. The aim of this study is a comparative analysis of lilac-gray and green frankamenite samples.

   Materials and Methods. The mineral composition of frankamenite-containing charoite rocks was studied by optical petrographic method using polarization microscope, the chemical composition was studied on electron probe microanalyzer. Crystal structure of frankamenite was studied using single crystal automatic diffractometer, and absorption and photoluminescence spectra were obtained on spectrophotometer and spectrofluorometer respectively.

   Results. The morphogenetic features of rock samples containing frankamenite, its paragenetic associations and relationships with associated minerals were studied. In terms of chemical composition, the Na2O and CaO contents in the samples are almost identical to the previously studied Murun samples, while the K2O level for lilac-gray and green frankamenite is higher than in the analyses of other authors. The crystal structure of green frankamenite was also studied, compared with the lilac-gray sample, and absorption and photoluminescence spectra were analyzed.

   Conclusions. Both varieties of the mineral differ in their associations of minerals: green frankamenite is usually associated with charoite, aegirine, microcline and quartz, while lilac-gray frankamenite is associated with charoite, amphibole, quartz, steacyite and apatite. Using EPR, optical absorption and photoluminescence methods, it was established that the green color of frankamenite is associated with Fe/Ti and Fe2+/Fe3+ charge transfer transitions.

About the Authors

E. V. Kaneva
A.P. Vinogradov Institute of Geochemistry, SB RAS
Russian Federation

Ekaterina V. Kaneva

Irkutsk664033; 1A Favorsky st.; Irkutsk



T. A. Radomskaya
A.P. Vinogradov Institute of Geochemistry, SB RAS
Russian Federation

Tatiana A. Radomskaya

664033; 1A Favorsky st.; Irkutsk



E. Yu. Dokuchits
China University of Geosciences
China

Emilia Yu. Dokuchits

430074; 388 Lumo Road; Wuhan



R. Yu. Shendrik
A.P. Vinogradov Institute of Geochemistry, SB RAS
Russian Federation

Roman Yu. Shendrik

664033; 1A Favorsky st.; Irkutsk



References

1. Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. (2003) Crystals version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr., 36, 1487.

2. Bogdanov A., Kaneva E., Shendrik R. (2021) New insights into the crystal chemistry of elpidite, Na<sub>2</sub>Zr[Si<sub>6</sub>O<sub>15</sub>]·3</sub>H<sub>2</sub>OH<sub>2</sub>O and (Na<sub>1+y</sub>Ca<sub>x</sub><sub>1-x-y</sub>)Σ=<sub>2</sub>Zr[Si<sub>6</sub>O<sub>15</sub>]·(3-x)H<sub>2</sub>O, and ab initio modeling of IR spectra. Materials, 14, 2160.

3. Bruker APEX2, version 2.0-2; Bruker AXS Inc.: Madison, WI, USA, 2007.

4. Bruker SAINT, version 6.0; Bruker AXS Inc.: Madison, WI, USA, 2007.

5. Copper R.I., Gould R.O., Parsons S., Watkin D.J. (2002) The derivation of non-merohedral twin laws during refinement by analysis of poorly fitting intensity data and the refinement of non-merohedrally twinned crystal structures in the program CRYSTALS. J. Appl. Crystallogr., 35, 168-174.

6. Czaja M., Lisiecki R. (2019) Luminescence of agrellite specimen from the Kipawa River locality. Minerals, 9, 752.

7. Day M., Hawthorne F.C. (2020) A structure hierarchy for silicate minerals: Chain, ribbon, and tube silicates. Mineral. Magaz., 84(2), 165-244.

8. Dokuchits E.Yu., Jiang S.-Y., Stepanov A.S., Zhukova I.A., Radomskaya T.A., Marfin A.E., Vishnevskiy A.V. (2022) Geochemistry of Ca-(K)-(Na) silicates from charoitites in the Sirenevyi Kamen gemstone deposit, Murun Complex, Eastern Siberia. Ore Geol. Rev., 143, 104787.

9. Dorfman M.D., Rogachev D.L., Goroshchenko Z.I., Uspenskaya E.I. (1959) Kanasit, a new mineral. Trudy Mineralogicheskogo muzeya AN SSSR, 9, 158-166.

10. Evdokimov M.D., Regir E.P. (1994) Kanasit in charoitites of the Murun alkaline complex (deposit “Sireniy Kamen”). ZVMO, 123(1), 104-118.

11. Hanus R., Štubňa J., Jungmannová K. (2020) Frankamenite as an ornamental gem material. J. Gemmol., 37(2), 132-133.

12. Homyakov A.P., Nechelyustov G.N., Krivokoneva G.K., Rascvetaeva R.K., Rozenberg K.A., Rozhdestvenskaya I.V. (2009) Ftorkanasit, K<sub>3</sub>Na<sub>3</sub>Ca<sub>5</sub>Si<sub>12</sub>O<sub>30</sub>(F,OH)<sub>4</sub> · H<sub>2</sub>O – a new mineral from the Khibiny alkaline massif (Kola Peninsula, Russia) and new data on fluorocanasite. ZRMO, 138(2), 52-66.

13. Kaneva E., Belozerova O., Radomskaya T., Shendrik R. (2024) Crystal chemistry, Raman and FTIR spectroscopy, optical absorption, and luminescence study of Fedominant sogdianite. Zeitschrift für Kristallographie – Crystalline Materials, 239(5-6), 183-197.

14. Kaneva E., Bogdanov A., Shendrik R. (2020a) Structural and vibrational properties of agrellite. Sci. Rep., 10, 15569.

15. Kaneva E., Shendrik R., Mesto E., Bogdanov A., Vladykin N. (2020b) Spectroscopy and crystal chemical properties of NaCa<sub>2</sub>[Si<sub>4</sub>O10]F natural agrellite with tubular structure. Chem. Phys. Lett., 738, 136868.

16. Kaneva E., Shendrik R., Pankrushina E., Dokuchits E., Radomskaya T., Pechurin M., Ushakov A. (2023) Frankamenite: Relationship between the crystal–chemical and vibrational properties. Minerals, 13, 1017.

17. Konev A.A., Vorob'ev E.I., Lazebnik K.A. (1996) Mineralogy of the Murun alkaline massif. Novosiibirsk, Publishing house SB RAS, SRC OIGGM, 221 p.

18. Krivovichev S. (2013) Structural complexity of minerals: Information storage and processing in the mineral world. Mineral. Magaz., 77(3), 275-326.

19. Mattson S.M., Rossman G.R. (1988) Fe<sup>2+</sup>–Ti<sup>4+</sup> charge transfer in stoichiometric Fe<sup>2+</sup>, Ti<sup>4+</sup>–minerals. Phys. Chem. Miner., 16(1), 78-82.

20. Nikishova L.V., Lazebnik K.A., Rozhdestvenskaya I.V., Emel’yanova N.N., Lazebnik Yu.D. (1992) Triclinic canasite from charoitites of Yakutia. Mineralogicheskii zhurnal, 14(1), 71-77.

21. Nikishova L.V., Lazebnik K.A., Rozhdestvenskaya I.V., Emel’yanova N.N., Lazebnik YU.D. (1996) Frankamenit K<sub>3</sub>Na<sub>3</sub>Ca<sub>5</sub>(Si<sub>12</sub>O<sub>30</sub>)F<sub>3</sub>(OH)·nH<sub>2</sub>O – new mineral. Triclinic analogue of canasit from charoitites. ZVMO, 125(2), 106-108.

22. Pathak N., Gupta S.K., Sanyal K., Kumar M., Kadam R.M., Natarajan V. (2014) Photoluminescence and EPR studies on Fe<sup>3+</sup> doped ZnAl<sub>2</sub>O<sub>4</sub>: An evidence for local site swapping of Fe<sup>3+</sup> and formation of inverse and normal phase. Dalton Transactions, 43(24), 9313-9323.

23. Radomskaya T., Kaneva E., Dokuchic E., Shendrik R., Mitichkin M. (2023a) Frankamenite in charoite rocks of the Murun massif (Aldan shield). Geology and mineral resources of the North-East of Russia. Proc. XIII All-Russian scientific-practical conference. Yakutsk, 216-222.

24. Radomskaya T.A., Kaneva E.V., Dokuchic E.Yu., Shendrik R.Yu., Mitichkin M.A. (2023b) Comparative characteristics of green and gray frankamenite in charoite rocks of the Murun massif (Aldan). Alkaline and kimberlite magmatism of the Earth and related deposits of strategic metals and diamonds. Coll. Art. Int. Sci. Conf. Apatity, 341-344.

25. Rastsvetaeva R.K., Rozenberg K.A., Homyakov A.P., Rozhdestvenskaya I.V. (2003) Crystal structure of F-canacite. DAN, 391 (1-3), 177-180.

26. Rogova V.P., Rogov Yu.G., Dric V.A., Kuznecova N.N. (1978) Charoite – a new mineral and a new ornamental stone. ZVMO, 107 (1), 94-99.

27. Rozhdestvenskaya I.V., Nikishova L.V., Bannova I.I., Lazebnik Yu.D. (1988) Kanasit: refinement and features of the crystal structure, structural typomorphism. Mineralogicheskii zhurnal, 10(4), 31-44.

28. Rozhdestvenskaya I.V., Nikishova L.V., Lazebnik K.A. (1996) The crystal structure of frankamenite. Mineral. Magaz., 60, 897-905.

29. Taran M.N. (2019) Electronic intervalence Fe<sup>2+</sup> + Ti<sup>4+</sup> → Fe<sup>3+</sup> + Ti<sup>3+</sup> charge-transfer transition in ilmenite. Phys. Chem. Miner., 46, 839-843.


Review

For citations:


Kaneva E.V., Radomskaya T.A., Dokuchits E.Yu., Shendrik R.Yu. Frankamenite in charoite rocks of the Murun massif: comparative characterization of green and lilac-gray varieties. LITHOSPHERE (Russia). 2025;25(2):238-250. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-238-250. EDN: XADALM

Views: 860


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)