Frankamenite in charoite rocks of the Murun massif: comparative characterization of green and lilac-gray varieties
https://doi.org/10.24930/1681-9004-2025-25-2-238-250
EDN: XADALM
Abstract
Research subject. Two varieties of frankamenite, green and lilac-gray, were discovered in the charoite rocks of the Murun massif.
Aim. The aim of this study is a comparative analysis of lilac-gray and green frankamenite samples.
Materials and Methods. The mineral composition of frankamenite-containing charoite rocks was studied by optical petrographic method using polarization microscope, the chemical composition was studied on electron probe microanalyzer. Crystal structure of frankamenite was studied using single crystal automatic diffractometer, and absorption and photoluminescence spectra were obtained on spectrophotometer and spectrofluorometer respectively.
Results. The morphogenetic features of rock samples containing frankamenite, its paragenetic associations and relationships with associated minerals were studied. In terms of chemical composition, the Na2O and CaO contents in the samples are almost identical to the previously studied Murun samples, while the K2O level for lilac-gray and green frankamenite is higher than in the analyses of other authors. The crystal structure of green frankamenite was also studied, compared with the lilac-gray sample, and absorption and photoluminescence spectra were analyzed.
Conclusions. Both varieties of the mineral differ in their associations of minerals: green frankamenite is usually associated with charoite, aegirine, microcline and quartz, while lilac-gray frankamenite is associated with charoite, amphibole, quartz, steacyite and apatite. Using EPR, optical absorption and photoluminescence methods, it was established that the green color of frankamenite is associated with Fe/Ti and Fe2+/Fe3+ charge transfer transitions.
About the Authors
E. V. KanevaRussian Federation
Ekaterina V. Kaneva
Irkutsk664033; 1A Favorsky st.; Irkutsk
T. A. Radomskaya
Russian Federation
Tatiana A. Radomskaya
664033; 1A Favorsky st.; Irkutsk
E. Yu. Dokuchits
China
Emilia Yu. Dokuchits
430074; 388 Lumo Road; Wuhan
R. Yu. Shendrik
Russian Federation
Roman Yu. Shendrik
664033; 1A Favorsky st.; Irkutsk
References
1. Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. (2003) Crystals version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr., 36, 1487.
2. Bogdanov A., Kaneva E., Shendrik R. (2021) New insights into the crystal chemistry of elpidite, Na<sub>2</sub>Zr[Si<sub>6</sub>O<sub>15</sub>]·3</sub>H<sub>2</sub>OH<sub>2</sub>O and (Na<sub>1+y</sub>Ca<sub>x</sub><sub>1-x-y</sub>)Σ=<sub>2</sub>Zr[Si<sub>6</sub>O<sub>15</sub>]·(3-x)H<sub>2</sub>O, and ab initio modeling of IR spectra. Materials, 14, 2160.
3. Bruker APEX2, version 2.0-2; Bruker AXS Inc.: Madison, WI, USA, 2007.
4. Bruker SAINT, version 6.0; Bruker AXS Inc.: Madison, WI, USA, 2007.
5. Copper R.I., Gould R.O., Parsons S., Watkin D.J. (2002) The derivation of non-merohedral twin laws during refinement by analysis of poorly fitting intensity data and the refinement of non-merohedrally twinned crystal structures in the program CRYSTALS. J. Appl. Crystallogr., 35, 168-174.
6. Czaja M., Lisiecki R. (2019) Luminescence of agrellite specimen from the Kipawa River locality. Minerals, 9, 752.
7. Day M., Hawthorne F.C. (2020) A structure hierarchy for silicate minerals: Chain, ribbon, and tube silicates. Mineral. Magaz., 84(2), 165-244.
8. Dokuchits E.Yu., Jiang S.-Y., Stepanov A.S., Zhukova I.A., Radomskaya T.A., Marfin A.E., Vishnevskiy A.V. (2022) Geochemistry of Ca-(K)-(Na) silicates from charoitites in the Sirenevyi Kamen gemstone deposit, Murun Complex, Eastern Siberia. Ore Geol. Rev., 143, 104787.
9. Dorfman M.D., Rogachev D.L., Goroshchenko Z.I., Uspenskaya E.I. (1959) Kanasit, a new mineral. Trudy Mineralogicheskogo muzeya AN SSSR, 9, 158-166.
10. Evdokimov M.D., Regir E.P. (1994) Kanasit in charoitites of the Murun alkaline complex (deposit “Sireniy Kamen”). ZVMO, 123(1), 104-118.
11. Hanus R., Štubňa J., Jungmannová K. (2020) Frankamenite as an ornamental gem material. J. Gemmol., 37(2), 132-133.
12. Homyakov A.P., Nechelyustov G.N., Krivokoneva G.K., Rascvetaeva R.K., Rozenberg K.A., Rozhdestvenskaya I.V. (2009) Ftorkanasit, K<sub>3</sub>Na<sub>3</sub>Ca<sub>5</sub>Si<sub>12</sub>O<sub>30</sub>(F,OH)<sub>4</sub> · H<sub>2</sub>O – a new mineral from the Khibiny alkaline massif (Kola Peninsula, Russia) and new data on fluorocanasite. ZRMO, 138(2), 52-66.
13. Kaneva E., Belozerova O., Radomskaya T., Shendrik R. (2024) Crystal chemistry, Raman and FTIR spectroscopy, optical absorption, and luminescence study of Fedominant sogdianite. Zeitschrift für Kristallographie – Crystalline Materials, 239(5-6), 183-197.
14. Kaneva E., Bogdanov A., Shendrik R. (2020a) Structural and vibrational properties of agrellite. Sci. Rep., 10, 15569.
15. Kaneva E., Shendrik R., Mesto E., Bogdanov A., Vladykin N. (2020b) Spectroscopy and crystal chemical properties of NaCa<sub>2</sub>[Si<sub>4</sub>O10]F natural agrellite with tubular structure. Chem. Phys. Lett., 738, 136868.
16. Kaneva E., Shendrik R., Pankrushina E., Dokuchits E., Radomskaya T., Pechurin M., Ushakov A. (2023) Frankamenite: Relationship between the crystal–chemical and vibrational properties. Minerals, 13, 1017.
17. Konev A.A., Vorob'ev E.I., Lazebnik K.A. (1996) Mineralogy of the Murun alkaline massif. Novosiibirsk, Publishing house SB RAS, SRC OIGGM, 221 p.
18. Krivovichev S. (2013) Structural complexity of minerals: Information storage and processing in the mineral world. Mineral. Magaz., 77(3), 275-326.
19. Mattson S.M., Rossman G.R. (1988) Fe<sup>2+</sup>–Ti<sup>4+</sup> charge transfer in stoichiometric Fe<sup>2+</sup>, Ti<sup>4+</sup>–minerals. Phys. Chem. Miner., 16(1), 78-82.
20. Nikishova L.V., Lazebnik K.A., Rozhdestvenskaya I.V., Emel’yanova N.N., Lazebnik Yu.D. (1992) Triclinic canasite from charoitites of Yakutia. Mineralogicheskii zhurnal, 14(1), 71-77.
21. Nikishova L.V., Lazebnik K.A., Rozhdestvenskaya I.V., Emel’yanova N.N., Lazebnik YU.D. (1996) Frankamenit K<sub>3</sub>Na<sub>3</sub>Ca<sub>5</sub>(Si<sub>12</sub>O<sub>30</sub>)F<sub>3</sub>(OH)·nH<sub>2</sub>O – new mineral. Triclinic analogue of canasit from charoitites. ZVMO, 125(2), 106-108.
22. Pathak N., Gupta S.K., Sanyal K., Kumar M., Kadam R.M., Natarajan V. (2014) Photoluminescence and EPR studies on Fe<sup>3+</sup> doped ZnAl<sub>2</sub>O<sub>4</sub>: An evidence for local site swapping of Fe<sup>3+</sup> and formation of inverse and normal phase. Dalton Transactions, 43(24), 9313-9323.
23. Radomskaya T., Kaneva E., Dokuchic E., Shendrik R., Mitichkin M. (2023a) Frankamenite in charoite rocks of the Murun massif (Aldan shield). Geology and mineral resources of the North-East of Russia. Proc. XIII All-Russian scientific-practical conference. Yakutsk, 216-222.
24. Radomskaya T.A., Kaneva E.V., Dokuchic E.Yu., Shendrik R.Yu., Mitichkin M.A. (2023b) Comparative characteristics of green and gray frankamenite in charoite rocks of the Murun massif (Aldan). Alkaline and kimberlite magmatism of the Earth and related deposits of strategic metals and diamonds. Coll. Art. Int. Sci. Conf. Apatity, 341-344.
25. Rastsvetaeva R.K., Rozenberg K.A., Homyakov A.P., Rozhdestvenskaya I.V. (2003) Crystal structure of F-canacite. DAN, 391 (1-3), 177-180.
26. Rogova V.P., Rogov Yu.G., Dric V.A., Kuznecova N.N. (1978) Charoite – a new mineral and a new ornamental stone. ZVMO, 107 (1), 94-99.
27. Rozhdestvenskaya I.V., Nikishova L.V., Bannova I.I., Lazebnik Yu.D. (1988) Kanasit: refinement and features of the crystal structure, structural typomorphism. Mineralogicheskii zhurnal, 10(4), 31-44.
28. Rozhdestvenskaya I.V., Nikishova L.V., Lazebnik K.A. (1996) The crystal structure of frankamenite. Mineral. Magaz., 60, 897-905.
29. Taran M.N. (2019) Electronic intervalence Fe<sup>2+</sup> + Ti<sup>4+</sup> → Fe<sup>3+</sup> + Ti<sup>3+</sup> charge-transfer transition in ilmenite. Phys. Chem. Miner., 46, 839-843.
Review
For citations:
Kaneva E.V., Radomskaya T.A., Dokuchits E.Yu., Shendrik R.Yu. Frankamenite in charoite rocks of the Murun massif: comparative characterization of green and lilac-gray varieties. LITHOSPHERE (Russia). 2025;25(2):238-250. (In Russ.) https://doi.org/10.24930/1681-9004-2025-25-2-238-250. EDN: XADALM